Нарушение синтеза и распада белков. Нарушение второго этапа белкового обмена - процессов эндогенного синтеза и распада белка

Нарушение синтеза и распада белков. Нарушение второго этапа белкового обмена - процессов эндогенного синтеза и распада белка
Нарушение синтеза и распада белков. Нарушение второго этапа белкового обмена - процессов эндогенного синтеза и распада белка

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство здравоохранения Калужской области

ГАОУ КО СПО «Калужский базовый медицинский колледж»

Реферат на тему:

Нарушения биосинтеза белка. Их последствия.

Студентки группы: Фц021

Просяновой Ольги

Преподаватель: Сафонова В.М.

Калуга 2014

белок ингибитор аминокислота яд

4. Дефицит АТФ

6. Генные мутации

1. Нарушения структуры генов, кодирующих информацию о строении белков (мутации)

Точная работа всех матричных биосинтезов - репликации, транскрипции и трансляции - обеспечивает копирование генома и воспроизведение фенотипических характеристик организма в поколениях, т.е. наследственности. Однако биологическая эволюция и естественный отбор возможны только при наличии генетической изменчивости. Установлено, что геном постоянно претерпевает разнообразные изменения. Несмотря на эффективность механизмов коррекции и репарации ДНК, часть повреждений или ошибок в ДНК остаётся. Изменения в последовательности пуриновых или пиримидиновых оснований в гене, не исправленные ферментами репарации, получили название"мутации". Одни из них остаются в соматических клетках, в которых они возникли, а другие обнаруживаются в половых клетках, передаются по наследству и могут проявляться в фенотипе потомства как наследственная болезнь.

Ген или части генов могут перемещаться из одного места хромосомы в другие. Эти подвижные элементы или фрагменты ДНК получили название транспозонов и ретротранспозонов.

Транспозоны- участки ДНК, удаляемые из одного локуса хромосомы и встраиваемые в другой локус той же или другой хромосомы. Ретротранспозоны не покидают исходного положения в молекуле ДНК, но могут копироваться, и копии встраиваются, подобно транспозонам, в новый участок. Включаясь в гены или участки около генов, они могут вызывать мутации и изменять их экспрессию.

Геном эукариотов подвергается изменениям и при заражении ДНК- или РНК-содержащими вирусами, которые внедряют свой генетический материал в ДНК клеток хозяина.

2. Яды и специфические ингибиторы мультиферментных комплексов, обеспечивающих процессы транскрипции, трансляции и посттрансляционной модификации белков

Ингибиторами биосинтеза белков могут быть различные вещества, в том числе антибиотики, токсины, алкалоиды, антиметаболиты (аналоги) структурных единиц нуклеиновых кислот и др. Они широко используются в биохимических исследованиях инструменты для раскрытия механизма отдельных этапов биосинтеза белков, поскольку оказалось, что среди них можно подобрать такие, которые избирательно тормозят специфические фазы белкового синтеза. Антибиотики - вещества, синтезируемые микроорганизмами, плесенью, грибами, высшими растениями, тканями животных в процессе их жизнедеятельности, а также полученные синтетическим путем. Им свойственна бактериостатическое или бактерицидное действие. Антибиотики, которые взаимодействуют с ДНК, нарушают ее матричные функции и подавляют репликацию или транскрипцию, или оба эти процессы. Противоопухолевые антибиотики практически одинаково взаимодействуют с ДНК как опухолевых, так и нормальных клеток, поскольку они не отличаются избирательностью действия.

3. Дефицит незаменимых аминокислот

Аминокислоты-- органические соединения, в молекуле которых одновременно содержатся карбоксильные и аминные группы.

Отсутствие или недостаток в продуктах питания одной или нескольких незаменимых аминокислот негативно влияет на общее состояние организма, вызывает негативный азотистый баланс, нарушения синтеза белков, процессов роста и развития. У детей может возникнуть тяжелое заболевание - квашиокор .

Незаменимые аминокислоты применяют для обогащения кормов сельскохозяйственных животных с целью повышении я их продуктивности, а также в виде лекарственных препаратов. Осуществляется промышленный синтез некоторых незаменимых аминокислот - лизина, метионина, триптофана. Незаменимые аминокислоты поступают в организм человека вместе с продуктами питания растительного происхождения. В растениях осуществляется синтез более 200 разных аминокислот.

Белки играют важную роль в организме человека. Они выполняют следующие функции:

1) каталитическая

2) структурная

3) защитная

4) регуляторная

5) транспортная

Валин способен к гидрофобным взаимодействиям, принимает участие в стабилизации третичной структуры белков. Валин используется при синтезе алкалоидов, пантотеновой кислоты, ряда циклопептидов. Суточная потребность в валине составляет 1,3-3,8 г. Значительное количество валина содержится в миоглобине, казеине, эластине.

По химическим свойствам лейцин является типичной альфа-аминокислотой алифатического ряда. Лейцин входит в состав растительных и животных белков.Новые исследования указывают на то, что потребление высококачественного белка повышает уровень лейцина, аминокислоты, которая помогает человеку поддерживать объем мышечной массы и уменьшает содержание жира в организме, способствуя похудению.

Незаменимые аминокислоты - аминокислоты, которые не синтезируются в организме человека и должны обязательно поступать в организм с продуктами питания.

Восемь из 20 аминокислот являются незаменимыми:

изолейцин, лейцин, лизин, метионин, фенилаланин, треонин, триптофан и валин.

При декарбоксилировании триптофана образуется триптамин, который повышает артериальное давление крови. Нарушение обмена триптофана приводит к недоумию, а также является показателем таких заболеваний, как туберкулез, рак, сахарный диабет.

Недостаток метионина в продуктах питания приводит к задержке роста, нарушению процесса синтеза белков и многих биологически активных соединений. Метионин содержится во многих продуктах питания (в молоке, в частности, в молочном белке - казеине).

4. Дефицит АТФ

Основным источником энергии для клетки являются питательные вещества: углеводы, жиры и белки, которые окисляются с помощью кислорода. Практически все углеводы, прежде чем достичь клеток организма, благодаря работе желудочно-кишечного тракта и печени превращаются в глюкозу. Наряду с углеводами расщепляются также белки -- до аминокислот и липиды -- до жирных кислот. В клетке питательные вещества окисляются под действием кислорода и при участии ферментов, контролирующих реакции высвобождения энергии и ее утилизацию. Почти все окислительные реакции происходят в митохондриях, а высвобождаемая энергия запасается в виде макроэргического соединения -- АТФ. В дальнейшем для обеспечения внутриклеточных метаболических процессов энергией используется именно АТФ, а не питательные вещества. При высвобождении энергии АТФ отдает фосфатную группу и превращается в аденозиндифосфат. Выделившаяся энергия используется практически для всех клеточных процессов, например в реакциях биосинтеза и при мышечном сокращении. Восполнение запасов АТФ происходит путем воссоединения АДФ с остатком фосфорной кислоты за счет энергии питательных веществ. Этот процесс повторяется вновь и вновь. АТФ постоянно расходуется и накапливается, поэтому она получила название энергетической валюты клетки.

5. Нарушения образования транспортных и рибосомальной РНК, белков рибосом

Для осуществления синтеза нуклеиновых кислот необходимо присутствие в клетках достаточного количества пуриновых и пиримидиновых оснований, рибозы и дезоксирибозы, а также макроэргических фосфорных соединений. Материалом для синтеза пуриновых и пиримидиновых оснований являются одноуглеродные фрагменты некоторых аминокислот и их производных (аспарагиновая кислота, глицин, серин, глутамин), а также аммиак и С0 2 . Рибоза образуется из глюкозы в пентозном цикле, в дальнейшем она может превращаться в дезоксирибозу.

Наиболее выраженные нарушения синтеза ДНК имеют место при дефиците фолиевой кислоты и витамина В 12 .

При дефиците фолиевой кислоты нарушается использование одноуглеродных фрагментов аминокислот для синтеза пуриновых и пиримидиновых оснований.

Витамин В 12 необходим для образования некоторых коферментных форм фолиевой кислоты, при дефиците которых нарушается превращение диоксиуридинмонофосфата в дезокситимидилат. В результате нарушается синтез тимидина, что лимитирует образование новых молекул ДНК. Синтез РНК при дефиците витамина В 12 и фолиевой кислоты не нарушается. Пониженное образование ДНК тормозит вступление клеток в митоз вследствие удлинения синтетической фазы митотического цикла. Задержка митозов ведет к замедлению клеточных делений, в результате тормозится процесс физиологической регенерации в костном мозге и в других быстро обновляющихся тканях. Задержка митозов сопровождается увеличением размеров клеток, что, по-видимому, связано с удлинением интерфазы. Наиболее демонстративно эти изменения выражены в кроветворной ткани костного мозга: появляются гигантские эритробласты - мегалобласты, при созревании их образуются эритроциты больших размеров - мегалоциты. Обнаруживаются также увеличенные в размерах миелоциты, метамиелоциты и более зрелые гранулоциты. Гигантские клетки появляются и в других тканях: слизистой языка, желудка и кишечника, влагалища. Вследствие замедления процессов регенерации развиваются тяжелая форма малокровия (пернициозная анемия), лейкопения и тромбоцитопения, атрофические изменения в слизистой пищеварительного тракта.

Дефицит витамина В 12 у человека возникает при длительной вегетарианской диете, при нарушении его всасывания в кишечнике в связи с прекращением продукции внутреннего фактора Касла в желудке, при атрофии его слизистой в результате повреждения аутоантителами. Другими причинами развития гиповитаминоза В могут быть: гастрэктомия, инвазия широким лентецом, хроническое воспаление подвздошной кишки, отсутствие в слизистой кишечника специфических рецепторов, с которыми взаимодействует комплекс внутреннего фактора с витамином В12.

Дефицит фолиевой кислоты возникает при длительном отсутствии в пище зеленых овощей и животных белков, у детей раннего возраста при вскармливании одним молоком (в нем содержание фолиевой кислоты незначительно). Эндогенный дефицит фолиевой кислоты может развиться при нарушении всасывания ее в кишечнике (заболевание спру), нарушении депонирования (заболевания печени), повышенном расходовании (беременность, в случае если исходные запасы витамина были понижены), при длительном лечении некоторыми лекарственными препаратами (сульфаниламиды), при алкоголизме.

Они сопровождаются нарушением трансляции с образованием полипептидных цепочек в цитозоле, гр. ЭПС и митохондриях. Эти нарушения возникают при влиянии некоторых патологических факторов, например противоопухолевых препаратов, блокирующих синтез белков у эукариот. Изменения рибонуклеопротеидных комплексов рибосом, а также рецепторов к ним могут сопровождаться снижением связывания рибосом и полисом с гр. ЭПС в ходе образования секреторных белков. Такие вновь образованные полипептидные цепочки быстро разрушаются в матриксе цитоплазмы. Патология ядрышкового аппарата приводит к снижению содержания рибосом в цитоплазме и подавлению пластических процессов в организме. Некоторые особенности имеет патология митохондриальных рибосом. Их нарушения вызывают препараты, блокирующие белковый синтез у бактерий, например левомицетин, эритромицин, которые не влияют на активность цитоплазматических рибосом. Последствием нарушения Биосинтеза белка являются Генные мутации.

6. Генные мутации

Генные мутации - это мутации, в результате которых изменяются отдельные гены и появляются новые аллели. Генные мутации связаны с изменениями, происходящими внутри данного гена и затрагивающими его часть. Обычно это замена азотистых оснований в ДНК, вставка лишних пар или выпадение пары оснований.

Связь мутаций с рекомбинацией ДНК

Из процессов, связанных с рекомбинацией, наиболее часто приводит к мутациям неравный кроссинговер. Он происходит обычно в тех случаях, когда в хромосоме имеется несколько дуплицированных копий исходного гена, сохранивших похожую последовательность нуклеотидов. В результате неравного кроссинговера в одной из рекомбинантных хромосом происходит дупликация, а в другой -- делеция.

Связь мутаций с репарацией ДНК

Спонтанные повреждения ДНК встречаются довольно часто, такие события имеют место в каждой клетке. Для устранения последствий подобных повреждений имеется специальные репарационные механизмы (например, ошибочный участок ДНК вырезается и на этом месте восстанавливается исходный). Мутации возникают лишь тогда, когда репарационный механизм по каким-то причинам не работает или не справляется с устранением повреждений. Мутации, возникающие в генах, кодирующих белки, ответственные за репарацию, могут приводить к многократному повышению (мутаторный эффект) или понижению (антимутаторный эффект) частоты мутирования других генов. Так, мутации генов многих ферментов системы эксцизионной репарации приводят к резкому повышению частоты соматических мутаций у человека, а это, в свою очередь, приводит к развитию пигментной ксеродермы и злокачественных опухолей покровов. Мутации могут появляться не только при репликации, но и при репарации -- эксцизионной репарации или при пострепликативной (пример: серповидноклеточная анемия).

Литература

1. Общая биология.А.О.Рувинский; Под ред.А.О. Рувинского. М.: Просвещение, 1993. 544 с.

2. Биология в экзаменационных вопросах и ответах/Под. Общ.ред. Н.А.Лемезы. 2-е изд. Мн.: БелЭн, 1997. 464 с.

3. http://www.xumuk.ru/biologhim/233.html.

4. http://znanija.com/task/1150180.

5. http://www.eurolab.ua/symptoms/disorders/162/.

Размещено на Allbest.ru

...

Подобные документы

    Общие закономерности постсинтетической модификации белков. Процессы ковалентной модификации на уровне аминокислотных радикалов. Процессы, не включающие образование дериватов аминокислот. Посттрансляционное карбоксилирование остатков глутаминовой кислоты.

    реферат , добавлен 10.12.2011

    Регуляция метаболизма как управление скоростью биохимических процессов. Регуляция биосинтеза белков и особенности процесса репликации. Транскрипция генетической информации, механизм катаболитной репрессии, регуляция на этапе терминации транскрипции.

    контрольная работа , добавлен 26.07.2009

    Положения биологической гипотезы Жакоба-Мано. Роль генов-регуляторов в синтезе белков. Особенности протекания первого этапа этого процесса – транскрипции. Трансляция как следующая ступень их биосинтеза. Основы ферментативной регуляции этих процессов.

    презентация , добавлен 01.11.2015

    Регуляция на этапе биосинтеза и сборки компонентов аппарата трансляции и на этапе его функционирования. Регуляция круговорота белков путем избирательного протеолиза. Регуляция активности белковых посредников нековалентным взаимодействием с эффекторами.

    реферат , добавлен 26.07.2009

    История открытия и изучения белков. Строение молекулы белка, ее пространственная организация и свойства, роль в строении и жизнеобеспечении клетки. Совокупность реакций биологического синтеза. Всасывание аминокислот. Влияние кортизола на обмен белка.

    контрольная работа , добавлен 28.04.2014

    Использование незаменимых аминокислот, зависимость биологического и химического состава белков от их аминокислотного состава. Суточная норма потребления белка. Роль магния и калия для сердца. Собственное, симбионтное и аутолитическое типы пищеварения.

    контрольная работа , добавлен 29.12.2009

    Белки (протеины) – высоко молекулярные, азотосодержащие природные органические вещества, молекулы которых построены из аминокислот. Строение белков. Классификация белков. Физико-химические свойства белков. Биологические функции белков. Фермент.

    реферат , добавлен 15.05.2007

    Электрофоретическая подвижность белка, влияющие факторов и условия электрофореза. Сущность метода полного разделения сложной смеси белков. Извлечение белков из геля после электрофореза. Гели агарозы и их применения. Влияние вторичной структуры ДНК.

    реферат , добавлен 11.12.2009

    Проблемы сборки мембранных белков, методы исследования и условия переноса белков через мембраны. Сигнальная и мембранная (триггерная) гипотеза встраивания белков в мембрану. Процесс сборки мультисубъединичных комплексов и обновление мембранных белков.

    курсовая работа , добавлен 13.04.2009

    Типовые нарушения белкового обмена. Несоответствие поступления белка потреблению. Нарушение расщепления белка в ЖКТ и содержания белка в плазме крови. Расстройство конечных этапов катаболизма белка и метаболизма аминокислот. Нарушения липидного обмена.

Третья форма нарушений белкового обмена - диспротеинозы, то есть состояния, при которых образование белков не усилено и не ослаблено, а извращено. Такие ситуации чрезвычайно разнообразны. К ним, например, относятся различные формы гемоглобинозов, - патологические процессы, в основе которых лежит наличие в крови одного или нескольких аномальных гемоглобинов, то есть таких гемоглобинов, синтез которых ненормален, в результате чего образуется специфический белок с совершенно новыми свойствами (сниженный тропизм к кислороду, пониженная растворимость и т.д.).

Диспротеинозом, имеющим большое клиническое значение, является амилоидоз.

Этот патологический процесс представляет собой одну из форм нарушений белкового обмена, при которой в межтканевых щелях, по ходу сосудов и в их стенке, около мембран железистых органов откладывается особое вещество - амилоид, имеющее белково-полисахаридную природу. Амилоид резко нарушает функцию органов по месту своего отложения и может приводить не только к возникновению в организме тяжелых расстройств, связанных с патологией этих органов, но и к гибели последних.

Амилоидоз имеет достаточно широкое распространение. Помимо не очень часто встречающегося первичного амилоидоза (причина которого не выяснена), наследственных форм этого патологического процесса и старческого амилоидоза, являющегося результатом возрастных изменений у людей весьма преклонных лет, существует вторичный амилоидоз, представляющий собой следствие длительно протекающих воспалительных заболеваний Частота распространения вторичного амилоидоза в последние десятилетия прогрессивно нарастает.

Впервые изменения органов при амилоидозе были описаны в 1844 г. выдающимся венским патологом Карлом Рокитанским, который назвал этот патологический процесс сальным перерождением, подчеркнув тем самым, что при нем грубым изменениям подвергается структура многих внутренних органов. В 1858 г. Рудольф Вирхов выделил это заболевание в самостоятельную нозологическую форму и ввел сам термин - амилоидоз (от лат. amilum - крахмал). В 1894 г. Н. П. Кравков установил химическую структуру амилоида, показав, что это - сложное, комплексное вещество, представляющее собой белок, связанный с полисахаридом типа хондроитинсерной кислоты.

Вторичный амилоидоз возникает в результате наличия в организме хронических воспалительных (особенно - нагноительных) заболеваний (остеомиелит, кавернозчый туберкулез, сифилис, хронические нагноительные процессы в легких, ревматоидный полиартрит и т.д.). Нередкими этиологическими факторами амилоидоза также являются проказа малярия, хроническая дизентерия. Сам амилоидоз возникает через довольно большой срок после начала основного заболевания. Данный латентный период амилоидоза в среднем равняется 2-4 годам, но может затягиваться и на десятилетия. Далее следует период, в начале которого превалируют симптомы, свойственные основному патологическому процессу, а затем начинают проявляться нарушения функции того органа, в котором особенно сильно откладывается амилоид. Этому, как правило, предшествует выраженная альбуминурия (выделение белка с мочой), которая в ряде случаев длительное время является единственным симптомом заболевания, в связи с чем данная стадия амилоидоза носит название альбуминурической.

Следующая стадия амилоидоза характеризуется вовлечением в процесс печени и надпочечников, что ведет к развитию прогрессирующей белковой недостаточности. сопровождаемой гипопротеинемическими отеками, и сосудистой гипотонии. В соответствии с указанными симптомами эта стадия называется отечно-гипотонической.

Затем наступает заключительная стадия процесса, характеризующаяся нарастанием почечной недостаточности и развитием уремии (заключительная стадия почечной недостаточности), от которой больные и погибают. Поскольку при уремии в крови резко нарастает количество остаточного азота, терминальную фазу амилоидоза называют азотемической.

Откладывающийся в органах амилоид представляет по своему химическому составу глюкопротеид, в котором белок глобулин связан с мукополисахаридом - хондроитинсерной или мукоитинсерной кислотой. По своей структуре амилоид макроскопически выглядит как гомогенное вещество, однако он имеет субмикроскопическую, сходную с кристаллической, структуру. Амилоид состоит из пучков фибрилл, имеющих у человека длину от 1200 до 5000 нм и ширину 70-140 нм. Амилоидные фибриллы имеют упорядоченное (наракристаллическое) строение. Кроме того, в амилоиде выявлены сферические частицы, находящиеся вне связи с фибриллами.

Что касается патогенеза амилоидоза и механизмов образования амилоида, то в самом общем плане они сводятся к следующему.

Твердо установлено, что в основе развития амилоидоза лежит диспротеиноз. Полагают, что при хронических нагноительных заболеваниях нарушается белковый состав крови, в результате чего в ней появляется большое количество грубодисперсных белков, относящихся к группе гамма-глобулинов. Этот факт, а также и то, что вторичный амилоидоз является следствием заболеваний инфекционного характера, позволяет предполагать участие в патогенезе этого патологического процесса иммунологических механизмов. Данная мысль подтверждается также и тем, что при воспроизведении амилоидоза в эксперименте наблюдается выраженная пролиферация элементов ретикуло-эндотелиальной системы (РЭС). Рядом точных иммунологических и гистохимических исследований было показано, что клетки РЭС в процессе развития амилоидоза претерпевают определенную динамику. Вначале, при длительном антигенном стимуле возникает их пролиферация и трансформация в плазматические клетки. Гистохимические реакции, проводимые в этот период, показывают наличие в этих клетках пиронинофилии, свидетельствующей о нарастании в них количества РНК. По времени пиронинофилия совпадает с гамма-глобулинемией. Указанный комплекс изменений составляет предамилоидную стадию, которая при дальнейшем сохранении антигенного стимула переходит во вторую - амилоидную стадию, в течение которой пиронинофилия клеток уменьшается, что говорит об уменьшении в них количества РНК. но зато нарастает количество клеток, дающих PAS - положительную реакцию, которая выявляет полисахариды. Следовательно, в этот период в плазматических клетках происходит усиленное образование полисахаридов. Далее эти клетки начинают секретировать в окружающие ткани амилоид, являющийся нерастворимым соединением. Таким образом, амилоид не является продуктом соединения (вне сосудистого русла) глобулинов крови, диффундировавших через сосудистую стенку, с полисахаридным компонентом, как это полагали ранее, а секретируется на месте плазматическими клетками. Электронно-микроскопические исследования показывают, что в клетках РЭС происходит накопление предшественника амилоида - амилоидных фибрилл. По мере нарастания в клетке количества этих фибрилл развивается ее дегенерация с полной потерей собственной структуры. Далее оболочка клетки разрывается, фибриллы попадают в межклеточное пространство, где соединяются с секретированной этими же клетками полисахаридной субстанцией, в результате чего и образуется амилоид.

При амилоидозе обнаруживаются антитела к тканям того органа, в котором отлагается амилоид. В связи с этим можно предположить наличие в патогенезе амилоидоза и аутоиммунного компонента.

Нельзя забывать о возможном включении в динамику развития амилоидоза и неврогенного компонента. Об этом весьма убедительно свидетельствуют наблюдения, проведенные в блокадном и посблокадном Ленинграде. Статистические данные показывают, что во время блокады, когда, во-первых, было тяжелое голодание, а во-вторых, состояние чрезвычайного нервного напряжения, количество случаев амилоидоза было минимальным. Зато после окончания войны у лиц, перенесших блокаду, наблюдался резкий подъем заболеваемости амилоидозом, который значительно превысил довоенный уровень.

Поскольку амилоидоз развивается лишь у относительно небольшой части лиц, страдающих хроническими воспалительными заболеваниями, нельзя исключать роли наследственного фактора в его патогенезе.

Значение белкового обмена для организма определяется, прежде всего тем, что основу всех его тканевых элементов составляют именно белки, непрерывно подвергающиеся обновлению за счет процессов ассимиляции и диссимиляции своих основных частей – аминокислот и их комплексов. Поэтому нарушения обмена белков в различных вариантах являются компонентами патогенеза всех без исключения патологических процессов.

Роль протеинов в организме человека:

· структура всех тканей

· рост и репарация (восстановление) в клетках

· ферменты, гены, антитела и гормоны – это белковые продукты

· влияние на водный баланс через онкотическое давление

· участие в регуляции кислотно-основного баланса

Общее представление о нарушении белкового обмена можно получить при изучении азотистого равновесия организма и окружающей среды.

1. Положительный азотистый баланс – это состояние, когда из организма выводится меньше азота, чем поступает с пищей. Наблюдается во время роста организма, при беременности, после голодания, при избыточной секреции анаболических гормонов (СТГ, андрогены).

2. Отрицательный азотистый баланс – это состояние, когда из организма выводится больше азота, чем поступает с пищей. Развивается при голодании, протеинурии, кровотечениях, избыточной секреции катаболических гормонов (тироксин, глюкокортикоиды).

Типовые нарушения белкового обмена

1. Нарушения количества и качества поступающего в организм белка

2. Нарушение всасывания и синтеза белков

3. Нарушение межуточного обмена аминокислот

4. Нарушение белкового состава крови

5. Нарушение конечных этапов белкового обмена

1. Нарушения количества и качества поступающего в организм белка

а) Одной из наиболее частых причин нарушений белкового обмена является количественная иликачественная белковая недостаточность. Это обусловлено ограничением поступления экзогенных белков при голодании, низкой биологической ценностью пищевых белков, дефицитом незаменимых аминокислот.

Проявления при белковой недостаточности:

· отрицательный азотистый баланс

· замедление роста и развития организма

· недостаточность процессов регенерации тканей

· уменьшение массы тела

· снижение аппетита и усвоения белка

Крайними проявлениями белковой недостаточности являются квашиоркор и алиментарный маразм.

Алиментарный маразм – патологическое состояние, возникающее в результате длительного полного голодания и характеризующееся общим истощением, нарушением обмена веществ, атрофией мышц и нарушением функций большинства органов и систем организма.

Квашиоркор – заболевание, поражающее детей раннего возраста, вызывается качественным и количественным дефицитом белка при условии общей калорийной избыточности пищи.

б) Избыточное потребление белков вызывает следующие изменения в организме:

· положительный азотистый баланс

· диспепсия

· дисбактериоз

· кишечная аутоинфекция, аутоинтоксикация

· отвращение к белковой пище

2. Нарушение всасывания и синтеза белков

· нарушения расщепления белков в желудке (гастриты с пониженной секреторной активностью и низкой кислотностью, резекции желудка, опухоли желудка). Белки – носители чужеродной антигенной информации и должны расщепляться при переваривании, утрачивая антигенность, иначе их неполное расщепление приведет к пищевой аллергии.

· нарушение всасывания в кишечнике (острые и хронические панкреатиты, опухоли поджелудочной железы, дуодениты, энтериты, резекция тонкого кишечника)

· патологические мутации регулирующих и структурных генов

· нарушение регуляции синтеза белка (изменение соотношения анаболических и катаболических гормонов)

3. Нарушение межуточного обмена аминокислот

1. Нарушение трансаминирования (образование аминокислот)

· недостаточность пиридоксина (вит. В 6)

· голодание

· заболевания печени

2. Нарушение дезаминирования (разрушение аминокислот) вызывает гипераминоацидемию ® аминоацидурию ® изменение соотношения отдельных аминокислот в крови ® нарушение синтеза белков.

· недостаток пиридоксина, рибофлавина (В 2), никотиновой кислоты

· гипоксия

· голодание

3. Нарушение декарбоксилирования (протекает с образованием СО 2 и биогенных аминов) приводит к появлению большого количества биогенных аминов в тканях и нарушению местного кровообращения, повышению проницаемости сосудов и повреждению нервного аппарата.

· гипоксия

· ишемия и деструкция тканей

4. Нарушение белкового состава крови

Гиперпротеинемия – увеличение белка в плазме крови > 80 г/л

Последствия гиперпротеинемии: повышение вязкости крови, изменение ее реологических свойств и нарушение микроциркуляции.

Гипопротеинемия – уменьшение белка в плазме крови < 60 г/л

· голодание

· нарушение переваривания и всасывания белков

· нарушение синтеза белка (поражения печени)

· потеря белка (кровопотери, заб. почек, ожоги, воспаления)

· повышенный распад белка (лихорадка, опухоли, ­катаболических гормонов)

Последствия гипопротеинемии:

· ¯ резистентности и реактивности организма

· нарушение функций всех систем организма, т.к. нарушается синтез ферментов, гормонов и т.д.

5. Нарушение конечных этапов белкового обмена. Патофизиология конечных этапов белкового обмена включает в себя патологию процессов образования азотистых продуктов и выведение их из организма. Остаточный азот крови – это небелковый азот, остающийся после осаждения белков.

В норме 20-30 мг% состав:

· мочевина 50%

· аминокислоты 25%

· др. азотистые продукты 25%

Гиперазотемия – увеличение остаточного азота в крови

Накопление остаточного азота в крови приводит к интоксикации всего организма, в первую очередь ЦНС и развитию коматозного состояния.

Министерство здравоохранения Калужской области
ГАОУ КО СПО «Калужский базовый медицинский колледж»

Реферат на тему:
Нарушения биосинтеза белка. Их последствия.

Студентки группы: Фц021
Просяновой Ольги
Преподаватель: Сафонова В.М.

Калуга 2014

План
белок ингибитор аминокислота яд

2. Яды испецифические ингибиторы мультиферментных комплексов, обеспечивающих процессы транскрипции, трансляции и посттрансляционной модификации белков

4. Дефицит АТФ
5. Нарушения образования транспортных и рибосомальной РНК, белков рибосом
6. Генные мутации

1. Нарушения структуры генов, кодирующих информацию о строении белков (мутации)

Точная работа всех матричных биосинтезов -репликации, транскрипции и трансляции - обеспечивает копирование генома и воспроизведение фенотипических характеристик организма в поколениях, т.е. наследственности. Однако биологическая эволюция и естественный отбор возможны только при наличии генетической изменчивости. Установлено, что геном постоянно претерпевает разнообразные изменения. Несмотря на эффективность механизмов коррекции и репарацииДНК, часть повреждений или ошибок в ДНК остаётся. Изменения в последовательности пуриновых или пиримидиновых оснований в гене, не исправленные ферментами репарации, получили название"мутации". Одни из них остаются в соматических клетках, в которых они возникли, а другие обнаруживаются в половых клетках, передаются по наследству и могут проявляться в фенотипе потомства как наследственная болезнь.
Генили части генов могут перемещаться из одного места хромосомы в другие. Эти подвижные элементы или фрагменты ДНК получили название транспозонов и ретротранспозонов.
Транспозоны - участки ДНК, удаляемые из одного локуса хромосомы и встраиваемые в другой локус той же или другой хромосомы. Ретротранспозоны не покидают исходного положения в молекуле ДНК, но могут копироваться, и копии встраиваются,подобно транспозонам, в новый участок. Включаясь в гены или участки около генов, они могут вызывать мутации и изменять их экспрессию.
Геном эукариотов подвергается изменениям и при заражении ДНК- или РНК-содержащими вирусами, которые внедряют свой генетический материал в ДНК клеток хозяина.

2. Яды и специфические ингибиторы мультиферментных комплексов, обеспечивающих процессы транскрипции, трансляции ипосттрансляционной модификации белков

Ингибиторами биосинтеза белков могут быть различные вещества, в том числе антибиотики, токсины, алкалоиды, антиметаболиты (аналоги) структурных единиц нуклеиновых кислот и др. Они широко используются в биохимических исследованиях инструменты для раскрытия механизма отдельных этапов биосинтеза белков, поскольку оказалось, что среди них можно подобрать такие,которые избирательно тормозят специфические фазы белкового синтеза. Антибиотики - вещества, синтезируемые микроорганизмами, плесенью, грибами, высшими растениями, тканями животных в процессе их жизнедеятельности, а также полученные синтетическим путем. Им свойственна бактериостатическое или бактерицидное действие. Антибиотики, которые взаимодействуют с ДНК, нарушают ее матричные функции и подавляютрепликацию или транскрипцию, или оба эти процессы. Противоопухолевые антибиотики практически одинаково взаимодействуют с ДНК как опухолевых, так и нормальных клеток, поскольку они не отличаются избирательностью действия.

3. Дефицит незаменимых аминокислот

Аминокислоты- органические соединения, в молекуле которых одновременно содержатся карбоксильные и аминные группы.
Отсутствие или недостаток впродуктах питания одной или нескольких незаменимых аминокислот негативно влияет на общее состояние организма, вызывает негативный азотистый баланс, нарушения синтеза белков, процессов роста и развития. У детей может возникнуть тяжелое заболевание – квашиокор.
Незаменимые аминокислоты применяют для обогащения кормов сельскохозяйственных животных с целью повышении я их...

Ингибиторы синтеза белка – многочисленная и разнообразная по химической структуре группа антибиотиков, нарушающих физиологические функции рибосом бактерий. Ингибиторы белкового синтеза обладают достаточно высокой избирательностью действия, однако в высоких дозах могут повреждать клетки макроорганизма.

Антибиотики, нарушающие синтез белка на малой субъединице рибосом.

Аминогликозиды необратимо связываются с малыми субъединицами, в результате чего в клетке синтезируется аномальный белок; нарушают структуру и функцию цитоплазматической мембраны бактерий. Двойное действие обеспечивает высокую антибактериальную активность аминогликозидов и увеличивает их токсичность. Однако токсичность препаратов уменьшается от первого поколения антибиотиков к четвертому:

1 поколение: стрептомицин, неомицин, канамицин, мономицин,

2 поколение: гентамицин,

3 поколение: тобрамицин, амикацин, нетилмицин,

4 поколение: изепамицин.

К препаратам первого поколения у микроорганизмов быстро развивается устойчивость. У современных аминогликозидов более широкий спектр антибактериального действия и меньше риск развития побочных эффектов. Являются высокоэффективными противотуберкулезными препаратами. Большинство аминогликозидов плохо всасываются из желудочно-кишечного тракта и применяются парэнтерально. Выводятся почками в неизмененном виде, что с успехом используется при лечении инфекций мочевыводящих путей.

Тетрациклины (окситетрациклин, тетрациклин, метациклин, доксициклин, моноциклин) относятся к полусинтетическим антибиотикам. Нарушают связывание тРНК с рибосомой, что нарушает синтез белка на малой субъединице рибосом, вызывают бактериостатический эффект. Имеют широкий спектр действия, но из-за высокой токсичности эти антибиотики целесообразно назначать для лечения особо опасных инфекций (чума, холера, брюшной тиф, холера, бруцеллез). Тетрациклины гепатотоксичны, нефротоксичны, ототоксичны. У детей они нарушают формирование скелета и зубов (образуют хелатные комплексы с кальцием).

Антибиотики, нарушающие синтез белка на большой субъединице рибосом.

Макролиды нарушают продвижение рибосомы по мРНК, в результате чего снижается синтез белка на большой субъединице рибосом. Действуют бактериостатически. Принято выделять следующие поколения макролидов:

1 поколение: эритромицин, олеандомицин,

2 поколение: спирамицин, рокситромицин, кларитромицин, медикамицин, джозамицин,

3 поколение: азитромицин,

4 поколение: телитромицин.

Спектр действия макролидов расширяется с каждым последующим поколением препаратов. Значимой особенностью современных макролидов (азитромицин, кларитромицин, рокситромицин) является их способность стимулировать фагоцитоз. Кроме того современные макролиды превосходят родоначальников группы по продолжительности действия. Они хорошо проникают в различные ткани и создают высокие концентрации в области очага инфекции. В результате сокращается курс лечения и снижается вероятность рецидива. Особенностью кларитромицина является его эффективность в отношении бактерий, вызывающих язву желудка и двенадцатиперстной кишки. Низкая токсичность является самой привлекательной чертой макролидов.

Линкозамиды также нарушают синтез белка на большой субъединице рибосом. Основной представитель группы (клиндамицин) высокотоксичен, поэтому его назначают для лечения тяжелых инфекций, вызванных анаэробными бактериями.

Хлорамфеникол блокирует связывание аминокислот и подавляет синтез белка на большой субъединице рибосом. Оказывает бактериостатический эффект. Действует на грам+ и грам- бактерии, хорошо проникает через тканевые барьеры и обладает высокой активностью, но имеет небольшую широту терапевтического действия. В качестве побочного эффекта следует отметить угнетение кроветворения вплоть до апластической анемии (особенно высок риск развития у детей). Кроме того хлорамфеникол ингибирует микросомальное окисление в печени, что может изменить метаболизм других лекарственных препаратов. В основном применяется для лечения псевдотуберкулеза, тяжелых кишечных инфекций.

Фузидиевая кислота угнетает синтез белка на большой субъединице рибосом, оказывает бактериостатический эффект. Обладает широким спектром антибактериального действия и низкой токсичностью. Быстро всасывается и проникает во все органы и ткани, в том числе спинномозговую жидкость. Важным свойством антибиотика является его способность проникать в костную ткань, что с успехом применяется при лечении остеомиелитов. При назначении фузидиевой кислоты с другими антибиотиками наблюдается значительное усиление действия.

Лекция №6.

Синтетические противомикробные средства.

Мотивация: Современные синтетические противомикробные средства по своей силе и спектру действия не уступают самым мощным антибиотикам и занимают свою важную нишу в терапии инфекционных заболеваний.

Важное место в лечении инфекционных заболеваний сегодня занимают синтетические противомикробные средства, к которым относятся следующие группы лекарственных средств: сульфаниламидные препараты, производные 8-оксихинолина, производные хинолона, фторхинолоны, производные нитрофурана, производные хиноксалина, оксазолидиноны.

Сульфаниламидные препараты.

Они стали первыми химиотерапевтическими антибактериальными средствами широкого спектра действия, внедренными в практику еще в 30-х годах прошлого века.

Ключевой особенностью сульфаниламидов является их химическое сродство с пара-аминобензойной кислотой (ПАБК), которая необходима прокариотам для синтеза пуриновых и пиримидиновых оснований – структурных компонентов нуклеиновых кислот. В основе механизма действия сульфаниламидов лежит принцип конкурентного антагонизма: вследствие структурного сходства сульфаниламиды захватываются микробной клеткой вместо ПАБК, в результате чего угнетается синтез нуклеиновых кислот, подавляется рост и размножение микроорганизмов (бактериостатический эффект). Сульфаниламиды обладают высокой избирательностью противомикробного действия.

Спектр антимикробного действия сульфаниламидов довольно широк и включает следующих возбудителей инфекционных заболеваний:

1) бактерии (патогенные кокки (грам+ и грам-), кишечная палочка, возбудители дизентерии (шигеллы), холерный вибрион, возбудители газовой гангрены (клостридии), возбудитель сибирской язвы, дифтерии, возбудитель катаральной пневмонии)

2) хламидии (возбудители трахомы, возбудители орнитоза, возбудители пахового лимфогранулематоза)

3) актиномицеты (грибы)

4) простейшие (токсоплазмы, плазмодии малярии).

Большой практический интерес представляют сульаниламиды резорбтивного действия. По продолжительности действия эти препараты делятся на:

1) сульфаниламиды короткого действия (назначаются 4-6 раз в сутки) - сульфадимидин, сульфатиазол, сульфаэтидол, сульфакарбамид, сульфазоксазол

2) сульфаниамиды средней продолжительности действия (назначаются 3-4 раза в сутки) - сульфадиазин, сульфаметоксазол, сульфамоксал

3) сульфаниламиды длительного действия (назначаются 1-2 раза в сутки) - сульфапиридазин, сульфамонометоксин, сульфадиметоксин

4) сульфаниламиды сверхдлительного действия (назначаются 1 раз в сутки) - сульфаметоксипиразин, сульфадоксин.

С увеличением продолжительности действия препаратов уменьшается ударная доза, назначаемая при их первом приеме.

Длительность действия сульфаниламидов определяется их способностью связываться с белками плазмы, скоростью метаболизма и выведения. Так сульфаниламиды длительного и сверхдлительного действия, в отличие от "коротких" конъюгируют с глюкуроновой кислотой. В результате образуются антибактериально активные глюкурониды, которые хорошо растворимы и не выпадают в осадок в моче, а значит эффективны при лечении инфекционных заболеваний мочевыводящих путей.

Назначение высоких доз сульфаниламидных препаратов - залог успеха противомикробной терапии, так как только в этих условиях создаются максимально высокие концентрации лекарственного средства вокруг бактериальной клетки, что лишает ее возможности захватывать ПАБК. При использовании препаратов длительного действия в организме создаются стабильные концентрации вещества. Однако если возникают побочные явления, продолжительный эффект играет отрицательную роль, так как при вынужденной отмене препарата должно пройти несколько дней, прежде чем закончится его действие. Эти препараты целесообразно использовать при хронических инфекциях и для профилактики инфекций (например, в послеоперационном периоде). Следует также учитывать, что концентрация препаратов продолжительного действия в спинномозговой жидкости невелика (5-10% от концентрации в крови). Этим они отличаются от сульфаниламидов непродолжительного действия, которые накапливаются в ликворе в высоких концентрациях (50-80% от концентрации в плазме). Сульфаниламиды резорбтивного действия назначают при менингите, заболеваниях органов дыхания, инфекциях мочевыводящих и желчевыводящих путей.

К сульфаниламидам, действующим в просвете кишечника, относятся фталилсульфатиазол, сульфагуанидин, фтазин. Отличительной особенностью этих препаратов является их плохая всасываемость из ЖКТ, поэтому в просвете кишечника создаются высокие концентрации веществ. Прямыми показаниями к назначению сульфаниламидов, действующих в просвете кишечника, являются дизентерия, энтероколит, дуоденит, колит, а также профилактика кишечной инфекции в послеоперационном периоде. Учитывая, что микроорганизмы при этих заболеваниях локализуются не только в просвете, но в стенке кишечника, их целесообразно сочетать с хорошвсасывающимися сульфаниламидами или антибиотиками. Применение этой группы сульфаниламидов нужно сочетать с витаминами группы В, так как подавляется рост и размножение кишечной палочки, участвующей в процессе синтеза этих витаминов.

Сульфаниламиды местного действия включают сульфацетамид (альбуцид), сульфадиазин серебра, сульфатиазол серебра. Эти вещества назначают в виде растворов и мазей для лечения и профилактики конъюнктивита, блефарита, гонорейного поражения глаз, язв роговицы, ожоговой и раневой инфекции глаз. Для достижения терапевтического эффекта местно сульфаниламиды используют в очень высоких концентрациях. Необходимо учитывать, что активность сульфаниламидов резко падает в присутствии гноя, некротических масс, так как там содержится большое количество ПАБК. Поэтому сульфаниламиды следует применять только после первичной обработки раны. Следует также отметить, что совместное применение сульфаниламидов с другими лекарственными средствами, производными ПАБК, также резко снижает их противомикробную активность (пример фармакологической несовместимости). Увеличить антимикробную активность сульфаниламидов для местного применения можно, включив в молекулу лекарственного средства атом серебра. Ионы серебра взаимодействуют с белками микрорганизмов, что приводит к нарушению структуры и функции белков и гибели бактерий. В результате непрямого потенцированного снергизма между сульфаниламидом и атомом серебра эффект таких препаратов как сульфадиазин серебра и сульфатиазол серебра становится бактерицидным.

Сульфаниламиды, комбинированные с салициловой кислотой: салазосульфапиридин, салазопиридазин, салазодиметоксин. В толстом кишечнике под влиянием микрофлоры происходит гидролиз этих соединений с высвобождением месалазина и сульфаниламидного компонента. Такие сульфаниламидные препараты обладают анибактериальным и противовоспалительным эффектами (основан на ингибировании синтеза простагландинов). Их применяют при неспецифическом язвенном колите, болезни Крона (гранулематозном колите).

Известными сульфаниламидами, комбинированными с триметопримом, являются: ко-тримоксазол, лидаприм, сульфатон, гросептол, потесепил. В микробной клетке триметоприм блокирует фермент, участвующий в синтезе пуриновых оснований. Наблюдаемый в данном случае вид взаимодействия лекарственных средств представляет собой непрямой потенцированный синергизм. Эффект становится бактерицидным, так как развивающиеся изменения в микроорганизмах несовместимы с жизнью и приводят к их гибели.

По своей активности сульфаниламидные препараты значительно уступают другим антимикробным средствам и обладают сравнительно высокой токсичностью. Их назначают главным образом при непереносимости антибиотиков или развитии толерантности к ним. Нередко сульфаниламиды комбинируют с антибиотиками.

Производные 8-оксихинолина.

Препараты этого ряда обладают антибактериальным и антипротозойным действием. Механизм бактериостатического действия производных 8-оксихинолина включает: селективное ингибирование синтеза бактериальной ДНК; образование неактивных комплексов с металлосодержащими ферментами возбудителя; блокаду ферментов окислительного фосфорелирования и нарушение образования АТФ; галогенизацию и денатурацию (в больших концентрациях) белков возбудителя. Представители: нитроксолин, интестопан, энтеросептол.

Нитроксолин выделяется в неизмененном виде с мочой, где накапливается в бактериостатических концентрациях. В связи с этим препарат применяют как уроантисептик при инфекциях мочевыводящих путей, для профилактики инфекций после операций на почках и мочевыводящих путях, после диагностических манипуляций. Препарат обладает широким спектром антибактериального действия, кроме того оказывает угнетающее влияние на некоторые дрожжеподобные грибы рода Candida. Он хорошо переносится и практически не вызывает побочных эффектов, но к нему быстро развивается устойчивость микроорганизмов.

Интестопан обладает антибактериальной и антипротозойной активностью и показан при острых и хонических энтероколитах, амебной и бациллярной дизентерии, гнилостной диспепсии. Так как препарат содержит ионы брома, во избежание развития отравления необходимо строго придерживаться режима дозирования.

Энтеросептол практически не всасывается из ЖКТ и не оказывает системного действия. Применяется при ферментативной и гнилостной диспепсиях, бациллярной дизентерии, протозойных колитах, для лечения амебоносителей. Часто комбинируют с другими противомикробными средствами. При длительном применении (свыше 4-х недель) может вызывать периферические невриты, миелопатию, поражения зрительного нерва, отравление йодом.

Производные хинолона.

Представители: кислота налидиксовая, кислота оксолиниевая, кислота пипемидиевая. Механизм действия включает: угнетение синтеза ДНК, взаимодействие с металлосодержащими ферментами возбудителя, участие в реакциях перекисного окисления липидов. Спектр действия включает только грам- бактерии. Эффективны в отношении кишечной палочки, протея, клебсиелл, шигелл, сальмонелл. Синегнойная палочка к данным препаратам устойчива. Ценным качеством препаратов является активность в отношении штаммов, устойчивых к антибиотикам и сульфаниламидным препаратам. Резистентность к препаратам развивается достаточно быстро. Выводятся лекарственные средства и их метаболиты главным образом почками, вследствие чего в моче создаются высокие концентрации. Поэтому основное применение - инфекции мочевыводящих путей и профилактика инфекций при операциях на почках и мочевом пузыре.

Фторхинолоны.

Были созданы в ходе изучения описанных выше производных хинолона. Оказалось, что добавление в хинолоновую структуру атома фтора существенно усиливает антибактериальный эффект препарата. На сегодняшний день фторхинолоны являются одними из самых активных химиотерапевтических средств, по силе действия не уступая самым мощным антибиотикам. Фторхинолоны делят на три поколения.

Первое поколение содержит 1 атом фтора: ципрофлоксацин, пефлоксацин, офлоксацин, норфлоксацин, ломефлоксацин.

Второе поколение содержит 2 атома фтора: левофлоксацин, спарфлоксацин.

Третье поколение содержит 3 атома фтора: моксифлоксацин, гатифлоксацин, гемифлоксацин, надифлоксацин.

Среди известных синтетических противомикробных средств фторхинолоны обладают самым широким спектром действия и значительной антибактериальной активностью. Они активны в отношении грам- и грам+ кокков, кишечной палочки, сальмонелл, шигелл, протея, клебсиелл, хеликобактерий, синегнойной палочки. Отдельные препараты (ципрофлоксацин, офлоксацин, ломефлоксацин) действуют на микобактерии туберкулеза и могут применяться в комбинированной терапии при лекарственно устойчивом туберкулезе. К фторхинолонам не чувствительны спирохеты, листерии и большинство анаэробов. Фторхинолоны действуют на вне- и внутриклеточно локализованные микроорганизмы. Резистентность микрофлоры развивается относительно медленно. В основе механизма действия фторхинолонов лежит блокада жизненно важных ферментов бактерий, участвующих в синтезе, сохранении и восстановлении структуры ДНК. Нарушение функционирования этих ферментных систем приводит к раскручиванию молекулы ДНК и гибели клетки. Из-за структурного и функционального родства ферментных систем клеток прокариотов и эукариотов, фторхинолоны зачастую утрачивают свою избирательность действия и повреждают клетки макроорганизма, вызывая многочисленные побочные эффекты. Наиболее значимые из них: фототоксичность (УФ излучение разрушает фторхинолоны с образованием свободных радикалов, повреждающих структуру кожи), артротоксичность (нарушение развития хрящевой ткани), ингибирование метаболизма теофиллина и повышение его концентрации в крови. Эти препараты могут вызвать изменение картины крови, диспепсические и аллергические реакции, неврологические расстройства. Противопоказаны беременным и детям.

Наиболее целесообразно назначать препараты этой группы при таких тяжелых инфекциях как сепсис, перитонит, менингит, остеомиелит, туберкулез и др. Фторхинолоны показаны при инфекциях мочевыводящих путей, ЖКТ, кожи, мягких тканей, костей и суставов. В пульмонологической практике наиболее популярны фторхинолоны 2 и 3 поколений.

Высокая эффективность фторхинолонов при инфекциях практически любой локализации обусловлена следующими особенностями их фармакокинетики:

1) для препаратов этой группы характерен выраженный постантибиотический эффект

2) препараты хорошо проникают в различные органы и ткани (легкие, почки, кости, предстательную железу)

3) создают высокие концентрации в крови и тканях при приеме внутрь, причем биодоступность не зависит от приема пищи

4) обладают иммуномодулирующим эффектом, повышая фагоцитарную активность нейтрофилов

Выраженная бактерицидная активность фторхинолонов позволила разработать для ряда препаратов лекарственные формы для наружного применения.

Производные нитрофурана.

Механизм действия нитрофуранов включает:

1) образование комплексов с нуклеиновыми кислотами, в результате чего происходит нарушение структуры ДНК возбудителя, угнетение синтеза белков, нарушение роста и размножения бактерий (бактериостатический эффект)

2) угнетение цепи дыхания и цикла Кребса, что приводит к гибели клетки (бактерицидный эффект)

Особенности механизма действия позволяют сочетать нитрофураны с другими антибактериальными средствами.

Нитрофураны имеют широкий спектр антимикробного действия, который включает бактерии (грам+ кокки и гам- палочки), простейшие (лямблии, трихомонады), даже вирусы. Производные нитрофурана способны действовать на штаммы микроорганизмов, устойчивые к некоторым антибиотикам и сульфаниламидам. На анаэробы и синегнойную палочку нитрофураны не действуют. Они подавляют продукцию микроорганизмами токсинов, поэтому могут быстро устранить явления интоксикации при сохранении возбудителя в организме. Под влиянием нитрофуранов микробы снижают способность вырабатывать антифаги и теряют способность к фагоцитозу; нитрофураны подавляют развитие резистентности возбудителей к антибиотикам. Для нитрофуранов характерна низкая токсичность. Кроме того они повышают сопротивляемость организма к инфекциям. Одни препараты данной группы используются преимущественно в качестве антисептиков для наружного применения, другие – в основном для лечения инфекций кишечника и мочевыводящих путей.

Нитрофуразон (фурацилин) применяют наружно в качестве антисептика для обработки ран, кожи слизистых оболочек, промывания серозных полостей и суставных полостей.

Фуразолидон, нифуроксазид и нифурантел применяют при кишечных инфекциях бактериальной и протозойной этиологии (бациллярной дизентерии, паратифе, токсикоинфекциях, энтероколите), так как плохо всасываются в ЖКТ и создают высокие концентрации в просвете кишечника. Кроме того, фуразолидон и нифурантел эффективны при трихомонадном кольпите и лямблиозе.

Нитрофурантоин, нифуртоинол и фуразидин применяют при инфекциях мочевыводящих путей, а также для профилактики инфекционных осложнений при урологических операциях, цистоскопии, катетеризации мочевого пузыря. Препараты в значительных количествах выделяются почками с мочой, где создаются их бактериостатические и бактерицидные концентрации.

Фуразидин эффективен при местном применении для промывания и спринцевания в хирургической практике. Калиевую соль фуразидина можно вводить внутривенно при тяжелых формах инфекционных заболеваний (сепсис, раневая и гнойная инфекции, пневмонии).

Производные хиноксалина.

Эта группа антибактериальных средств представлена хиноксидином и диоксидином. Производные хиноксалина обладают широким спектром противомикробного действия, который включает вульгарного протея, синегнойную, кишечную палочку, палочку дизентерии и клебсиеллы, сальмонеллы, стафилококки, стрептококки, патогенные анаэробы, в том числе возбудитель газовой гангрены. Данные препараты активны в отношении бактерий, устойчивых к другим химиотерапевтическим средствам, включая антибиотики.

Бактерицидный эффект производных хиноксалина обусловлен активацией свободно-радикального окисления в микробной клетке, в результате чего нарушается синтез ДНК и происходят глубокие изменения в цитоплазме клетки, что приводит к гибели возбудителя. Активность лекарственных средств данной группы усиливается в анаэробной среде в связи с их способностью вызывать образование активных форм кислорода. В связи с высокой токсичностью производные хиноксалина используют только по жизненным показаниям для лечения тяжелых форм анаэробной или смешанной аэробно-анаэробной инфекции, вызванной полирезистентными штаммами при неэффективности других антимикробных средств. Назначают только взрослым (после пробы на переносимость) при стационарном лечении под контролем врача.

Показаниями к применению производных хиноксалина служат тяжелые гнойно-воспалительные процессы различной локализации, такие как гнойные плевриты, эпиема плевры, абсцессы легкого, перитониты, циститы, пиелиты, пиелоциститы, холециститы, холангиты, раны с наличием глубоких полостей, абсцессы мягких тканей, флегмоны, тяжелые дисбактериозы, сепсис, послеоперационные раны мочевыводящих и желчевыводящих путей, профилактика инфекционных осложнений после катетеризации.

Оксазолидиноны.

Это новый класс активных противомикробных препаратов. Первый препарат этой группы линезолид оказывает бактериостатическое действие преимущественно на грам+ бактерии и в меньшей степени на грам-. Бактерицидная активность отмечена лишь в отношении некоторых микроорганизмов.

Механизм действия основан на необратимом связывании с субъединицами рибосом, что приводит к угнетению синтеза белка в микробной клетке. Этот уникальный механизм препятствует развитию перекрестной резистентности с макролидами, аминогликозидами, линкозамидами, тетрациклинами, хлорамфениколом. Устойчивость возбудителей к линезолиду развивается очень медленно. Линезолид активен при госпитальной и внебольничной пневмонии (в комбинациях с антибиотиками, активными в отношении грам- микроорганизмов), инфекциях кожи и мягких тканей, мочевыводящих путей, эндокардите. Линезолид хорошо распределяется в тканях, накапливается в бронхолегочном эпителии, проникает в кожу, мягкие ткани, сердце, кишечник, печень, почки, ЦНС, синовиальную жидкость, кости, желчный пузырь. Быстро и полно всасывается из ЖКТ (100% биодоступность), выводится в основном с мочой. Применение линезолида может вызвать кандидоз, извращение вкуса, диспепсию, изменение общего билирубина, АЛТ, АСТ, ЩФ, анемию, тромбоцитопению. В целом препарат переносится хорошо.