Класс!ная физика. §1.20

Класс!ная физика. §1.20
Класс!ная физика. §1.20

План-конспект урока по теме «Скорость при прямолинейном движении с постоянным ускорением»

Дата :

Тема: «Скорость при прямолинейном движении с постоянным ускорением»

Цели:

Образовательная : Обеспечить и сформировать осознанное усвоение знаний о скорости при прямолинейном движении с постоянным ускорением;

Развивающая : Продолжить развитие навыков самостоятельной деятельности, навыков работы в группах.

Воспитательная : Формировать познавательный интерес к новым знаниям; воспитывать дисциплину поведения.

Тип урока: урок усвоения новых знаний

Оборудование и источники информации:

    Исаченкова, Л. А. Физика: учеб. для 9 кл. учреждений общ. сред. образования с рус. яз. обучения / Л. А. Исаченкова, Г. В. Пальчик, А. А. Сокольский; под ред. А. А. Сокольского. Минск: Народная асвета, 2015

    Исаченкова, Л. А. Сборник задач по физике. 9 класс: пособие для учащихся учреждений общ. сред. образования с рус. яз. обучения / Л. А. Исаченкова, Г. В. Пальчик, В. В. Дорофейчик. Минск: Аверсэв, 2016, 2017.

Структура урока:

    Организационный момент(5 мин)

    Актуализация опорных знаний(5мин)

    Изучение нового материала (15 мин)

    Физкультминутка (2 мин)

    Закрепление знаний (13мин)

    Итоги урока(5 мин)

    Организационный момент

Здравствуйте, садитесь! (Проверка присутствующих). Сегодня на уроке мы должны разобраться со скоростью при прямолинейном движении с постоянным ускорением. А это значит, что Тема урока : Скорость при прямолинейном движении с постоянным ускорением

    Актуализация опорных знаний

Самое простое из всех неравномерных движении - прямолинейное движение с постоянным ускорением. Его называют равнопеременным.

Как изменяется скорость тела при равнопеременном движении?

    Изучение нового материала

Рассмотрим движение стального шарика по наклонному желобу. Опыт показывает, что его ускорение практически постоянно:

Пусть в момент времени t = 0 шарик имел начальную скорость (рис. 83).

Как найти зависимость скорости шарика от времени?

Ускорение шарика а = . В нашем примере Δt = t , Δ - . Значит,

, откуда

При движении с постоянным ускорением скорость тела линейно зависит от времени.

Из равенств (1 ) и (2) следуют формулы для проекций:

Построим графики зависимости a x ( t ) и v x ( t ) (рис. 84, а, б).

Рис. 84

Согласно рисунку 83 а х = а > 0, = v 0 > 0.

Тогда зависимости a x ( t ) соответствует график 1 (см. рис. 84, а). Это прямая, параллельная оси времени. Зависимости v x ( t ) соответствует график , описывающий возрастание проекции ско рости (см. рис. 84, б). Понятно, что растет и модуль скорости. Шарик движется равноускоренно.

Рассмотрим второй пример (рис. 85). Теперь начальная скорость шарика направлена вдоль желоба вверх. Двигаясь вверх, шарик будет постепенно терять скорость. В точке А он на мгновение остановится и начнет скатываться вниз. Точку A называют точкой поворота.

Согласно рисунку 85 а х = - а < 0, = v 0 > 0, и формулам (3) и (4) соответствуют графики 2 и 2" (см. рис. 84, а , б).

График 2" показывает, что вначале, пока шарик двигался вверх, проекция скорости v x была положительна. Она уменьшалась и в момент времени t = стала равной нулю. В этот момент шарик достиг точки поворота A (см. рис. 85). В данной точке направление скорости шарика изменилось на противоположное и при t > проекция скорости стала отрицательной.

Из графика 2" (см. рис. 84, б) видно также, что до момента поворота модуль скорости уменьшался - шарик двигался вверх равнозамедленно. При t > t n модуль скорости растет - шарик движется вниз равноускоренно.

Постройте самостоятельно графики зависимости модуля скорости от времени для обоих примеров.

Какие еще закономерности равнопеременного движения необходимо знать?

В § 8 мы доказали, что для равномерного прямолинейного движения площадь фигуры между графиком v x и осью времени (см. рис. 57) численно равна проекции перемещения Δ r х . Можно доказать, что это правило применимо и для неравномерного движения. Тогда согласно рисунку 86 проекция перемещения Δ r х при равнопеременном движении определяется площадью трапеции ABCD . Эта площадь равна полусумме оснований трапеции умноженной на ее высоту AD .

В результате:

Так как среднее значение проекции скорости формулы (5)

следует:

При движении с постоянным ускорением соотношение (6) выполняется не только для проекции, но и для векторов скорости:

Средняя скорость движения с постоянным ускорением равна полусумме начальной и конечной скоростей.

Формулы (5), (6) и (7) нельзя использовать для движения с непостоянным ускорением. Это может привести к грубым ошибкам.

    Закрепление знаний

Разберем пример решения задачи со страницы 57:

Автомобиль двигался со скоростью, модуль которой = 72 . Увидев красный свет светофора, водитель на участке пути s = 50 м равномерно снизил скорость до = 18 . Определите характер движения автомобиля. Найдите направление и модуль ускорения, с которым двигался автомобиль при торможении.

Дано: Реше ние:

72 = 20 Движение автомобиля было равнозамедленным. Уско-

рение автомобиля направлено противоположно

18 = 5 скорости его движения.

Модуль ускорения:

s = 50 м

Время торможения:

а - ? Δ t =

Тогда

Ответ:

    Итоги урока

    При движении с постоянным ускорением скорость линейно зависит от времени.

    При равноускоренном движении направления мгновенной скорости и ускорения совпадают, при равнозамедленном - они противоположны.

    Средняя скорость движения с постоянным ускорением равна полусумме начальной и конечной скоростей.

Организация домашнего задания

§ 12, упр. 7 № 1, 5

Рефлексия.

Продолжите фразы:

    Сегодня на уроке я узнал…

    Было интересно…

    Знания, которые я получил на уроке, пригодятся

Движение. Теплота Китайгородский Александр Исаакович

Прямолинейное движение с постоянным ускорением

Такое движение возникает, согласно закону Ньютона, тогда, когда в сумме на тело действует постоянная сила, подгоняющая или тормозящая тело.

Хотя и не вполне точно, такие условия возникают довольно часто: тормозится под действием примерно постоянной силы трения автомашина, идущая с выключенным мотором, падает с высоты под действием постоянной силы тяжести увесистый предмет.

Зная величину результирующей силы, а также массу тела, мы найдем по формуле a = F /m величину ускорения. Так как

где t – время движения, v – конечная, а v 0 – начальная скорость, то при помощи этой формулы можно ответить на ряд вопросов такого, например, характера: через сколько времени остановится поезд, если известна сила торможения, масса поезда и начальная скорость? До какой скорости разгонится автомашина, если известна сила мотора, сила сопротивления, масса машины и время разгона?

Часто нам бывает интересно знать длину пути, пройденного телом в равномерно-ускоренном движении. Если движение равномерное, то пройденный путь находится умножением скорости движения на время движения. Если движение равномерно-ускоренное, то подсчет величины пройденного пути производится так, как если бы тело двигалось то же время t равномерно со скоростью, равной полусумме начальной и конечной скоростей:

Итак, при равномерно-ускоренном (или замедленном) движении путь, пройденный телом, равен произведению полусуммы начальной и конечной скоростей на время движения. Такой же путь был бы пройден за то же время при равномерном движении со скоростью (1/2)(v 0 + v ). В этом смысле про (1/2)(v 0 + v ) можно сказать, что это средняя скорость равномерно-ускоренного движения.

Полезно составить формулу, которая показывала бы зависимость пройденного пути от ускорения. Подставляя v = v 0 + at в последнюю формулу, находим:

или, если движение происходит без начальной скорости,

Если за одну секунду тело прошло 5 м, то за две секунды оно пройдет (4?5) м, за три секунды – (9?5) м и т.д. Пройденный путь возрастает пропорционально квадрату времени.

По этому закону падает с высоты тяжелое тело. Ускорение при свободном падении равно g , и формула приобретает такой вид:

если t подставить в секундах.

Если бы тело могло падать без помех каких-нибудь 100 секунд, то оно прошло бы с начала падения громадный путь – около 50 км. При этом за первые 10 секунд будет пройдено всего лишь (1/2) км – вот что значит ускоренное движение.

Но какую же скорость разовьет тело при падении с заданной высоты? Для ответа на этот вопрос нам понадобятся формулы, связывающие пройденный путь с ускорением и скоростью. Подставляя в S = (1/2)(v 0 + v )t значение времени движения t = (v ? v 0)/a , получим:

или, если начальная скорость равна нулю,

Десять метров – это высота небольшого двух- или трехэтажного дома. Почему опасно прыгнуть на Землю с крыши такого дома? Простой расчет показывает, что скорость свободного падения достигнет значения v = sqrt(2·9,8·10) м/с = 14 м/с? 50 км/ч, а ведь это городская скорость автомашины.

Сопротивление воздуха не намного уменьшит эту скорость.

Выведенные нами формулы применяются для самых различных расчетов. Применим их, чтобы посмотреть, как происходит движение на Луне.

В романе Уэллса «Первые люди на Луне» рассказывается о неожиданностях, испытанных путешественниками в их фантастических прогулках. На Луне ускорение тяжести примерно в 6 раз меньше земного. Если на Земле падающее тело проходит за первую секунду 5 м, то на Луне оно «проплывет» вниз всего лишь 80 см (ускорение равно примерно 1,6 м/с 2).

Прыжок с высоты h длится время t = sqrt(2h /g ). Так как лунное ускорение в 6 раз меньше земного, то на Луне для прыжка понадобится в sqrt(6) ? 2,45 раз больше времени. Во сколько же раз уменьшается конечная скорость прыжка (v = sqrt(2gh ))?

На Луне можно безопасно прыгнуть с крыши трехэтажного дома. В шесть раз возрастает высота прыжка, cделанного с той же начальной скоростью (формула h = v 2 /(2g )). Прыжок, превышающий земной рекорд, будет под силу ребенку.

Из книги Физика: Парадоксальная механика в вопросах и ответах автора Гулиа Нурбей Владимирович

4. Движение и сила

Из книги Новейшая книга фактов. Том 3 [Физика, химия и техника. История и археология. Разное] автора Кондрашов Анатолий Павлович

Из книги Теория Вселенной автора Этэрнус

Из книги Занимательно об астрономии автора Томилин Анатолий Николаевич

9. Движение Луны Луна обращается вокруг Земли с периодом в 27 дней 7 часов 43 минуты и 11,5 секунды. Этот период называется звездным, или сидерическим, месяцем. Точно с таким же периодом обращается Луна и вокруг собственной оси. Поэтому понятно, что к нам постоянно обращена

Из книги Эволюция физики автора Эйнштейн Альберт

Эфир и движение Принцип относительности Галилея справедлив для механических явлений. Во всех инерциальных системах, движущихся относительно друг друга, применимы одни и те же законы механики. Справедлив ли этот принцип и для немеханических явлений, особенно тех, для

Из книги Физика на каждом шагу автора Перельман Яков Исидорович

Движение по кругу Раскройте зонтик, уприте его концом в пол, закружите и бросьте внутрь мячик, скомканную бумагу, носовой платок – вообще что-нибудь легкое и неломкое. Произойдет нечто для вас неожиданное. Зонтик словно не пожелает принять подарка: мяч или бумажный ком

Из книги Движение. Теплота автора Китайгородский Александр Исаакович

Движение относительно Закон инерции приводит нас к выводу о множественности инерциальных систем.Не одна, а множество систем отсчета исключают «беспричинные» движения.Если одна такая система найдена, то сразу же найдется и другая, движущаяся поступательно (без

Из книги Системы мира (от древних до Ньютона) автора Гурев Григорий Абрамович

Движение по окружности Если точка движется по окружности, то движение является ускоренным, уже хотя бы потому, что в каждый момент времени скорость меняет свое направление. По величине скорость может оставаться неизменной, и мы остановим внимание именно на подобном

Из книги 1. Современная наука о природе, законы механики автора Фейнман Ричард Филлипс

Реактивное движение Человек движется, отталкиваясь от земли; лодка плывет потому, что гребцы отталкиваются веслами от воды; теплоход также отталкивается от воды, только не веслами, а винтами. Также отталкиваются от земли и поезд, идущий по рельсам, и автомашина, –

Из книги Фарадей. Электромагнитная индукция [Наука высокого напряжения] автора Кастильо Сержио Рарра

VI. Движение твердых тел Момент силы Попробуйте рукой привести во вращение тяжелое маховое колесо. Тяните за спицу. Вам будет тяжело, если вы ухватитесь рукой слишком близко к оси. Переместите руку к ободу, и дело пойдет легче.Что же изменилось? Ведь сила в обоих случаях

Из книги автора

Как выглядит тепловое движение Взаимодействие между молекулами может иметь большее или меньшее значение в «жизни» молекул.Три состояния вещества – газообразное, жидкое и твердое – различаются одно от другого той ролью, которую в них играет взаимодействие

Из книги автора

ПРЕВРАТИТЬ ЭЛЕКТРИЧЕСТВО В ДВИЖЕНИЕ Фарадей заметил в опытах Эрстеда одну маленькую деталь, которая, как казалось, содержала ключ к пониманию проблемы.Он догадался, что магнетизм электрического тока всегда отклоняет стрелку компаса в одну сторону. Например, если

Цели урока:

Образовательные:

Развивающие:

Воспитательные

Тип урока : Комбинированный урок.

Просмотр содержимого документа
«Тема урока: «Ускорение. Прямолинейное движение с постоянным ускорением».»

Подготовила – учитель физики МБОУ «СОШ №4» Погребняк Марина Николаевна

Класс -11

Урок 5/4 Тема урока: «Ускорение. Прямолинейное движение с постоянным ускорением ».

Цели урока:

Образовательные: Познакомить учащихся с характерными особенностями прямолинейного равноускоренного движения. Дать понятие об ускорении как основной физической величине, характеризующей неравномерное движение. Вввести формулу для определения мгновенной скорости тела в любой момент времени, рассчитывать мгновенную скорость тела в любой момент времени,

совершенствовать умения учащихся решать задачи аналитическим и графическим способами.

Развивающие: развитие у школьников теоретического, творческого мышления, формирование операционного мышления, направленного на выбор оптимальных решений

Вос питательные : воспитывать сознательное отношение к учебе и заинтересованность в изучении физики.

Тип урока : Комбинированный урок.

Демонстрации:

1. Равноускоренное движение шарика по наклонной плоскости.

2. Мультимедийное приложение «Основы кинематики»: фрагмент «Равноускоренное движение».

Ход работы.

1.Организационный момент .

2. Проверка знаний : Самостоятельная работа («Перемещение.» «Графики прямолинейного равномерного движения») - 12 мин.

3. Изучение нового материала.

План изложения нового материала:

1. Мгновенная скорость.

2. Ускорение.

3. Скорость при прямолинейном равноускоренном движении.

1. Мгновенная скорость. Если скорость тела изменяется со временем, для описания движения надо знать, чему равна скорость тела в данный момент времени (или в данной точке траектории). Эта скорость называется мгновенной скоростью.

Можно также сказать, что мгновенная скорость - это средняя скорость за очень малый интервал времени. При движении с переменной скоростью средняя скорость, измеренная за различные интервалы времени, будет разной.

Однако, если при измерении средней скорости брать все меньшие и меньшие интервалы времени, значение средней скорости будет стремиться к некоторому определенному значению. Это и есть мгновенная скорость в данный момент времени. В дальнейшем, говоря о скорости тела, мы будем иметь в виду его мгновенную скорость.

2. Ускорение. При неравномерном движении мгновенная скорость тела - величина переменная; она различна по модулю и (или) по направлению в разные моменты времени и в разных точках траектории. Все спидометры автомобилей и мотоциклов показывают нам только модуль мгновенной скорости.

Если мгновенная скорость неравномерного движения изменяется неодинаково за одинаковые промежутки времени, то рассчитать ее очень трудно.

Такие сложные неравномерные движения в школе не изучаются. Поэтому рассмотрим только самое простое неравномерное движение - равноускоренное прямолинейное.

Прямолинейное движение, при котором мгновенная скорость за любые равные интервалы времени изменяется одинаково, называют равноускоренным прямолинейным движением.

Если скорость тела при движении изменяется, возникает вопрос: какова «скорость изменения скорости»? Эта величина, называемая ускорением, играет важнейшую роль во всей механике: вскоре мы увидим, что ускорение тела определяется действующими на это тело силами.

Ускорением называется отношение изменения скорости тела к интервалу времени, за который это изменение произошло.

Единица измерения ускорения в СИ: м/с 2 .

Если тело движется в одном направлении с ускорением 1 м/с 2 , его скорость изменяется каждую секунду на 1 м/с.

Термин «ускорение» используется в физике, когда речь идет о любом изменении скорости, в том числе и тогда, когда модуль скорости уменьшается или когда модуль скорости остается неизменным и скорость изменяется только по направлению.

3. Скорость при прямолинейном равноускоренном движении.

Из определения ускорения следует, что v = v 0 + at.

Если направить ось х вдоль прямой, по которой движется тело, то в проекциях на ось х получим v x = v 0 x + a x t.

Таким образом, при прямолинейном равноускоренном движении проекция скорости линейно зависит от времени. Это означает, что графиком зависимости v x (t) является отрезок прямой.

Формула перемещения:

График скорости разгоняющегося автомобиля:

График скорости тормозящего автомобиля

4. Закрепление нового материала.

Чему равна мгновенная скорость камня, брошенного вертикально вверх, в верхней точке траектории?

О какой скорости - средней или мгновенной - идет речь в следующих случаях:

а) поезд прошел путь между станциями со скоростью 70 км/ч;

б) скорость движения молотка при ударе равна 5 м/с;

в) скоростемер на электровозе показывает 60 км/ч;

г) пуля вылетает из винтовки со скоростью 600 м/с.

ЗАДАЧИ, РЕШАЕМЫЕ НА УРОКЕ

Ось ОХ направлена вдоль траектории прямолинейного движения тела. Что вы можете сказать о движении, при котором: a) v x 0, а х 0; б) v x 0, а х v x х 0;

г) v x х v x х = 0?

1. Хоккеист слегка ударил клюшкой по шайбе, придав ей скорость 2 м/с. Чему будет равна скорость шайбы через 4 с после удара, если в результате трения о лед она движется с ускорением 0,25 м/с 2 ?

2. Поезд через 10 с после начала движения приобретает скорость 0,6 м/с. Через сколько времени от начала движения скорость поезда станет равна 3м/с?

5.ДОМАШНЕЕ ЗАДАНИЕ : §5,6, упр. 5 №2, упр. 6 №2.

Изучением классического механического движения в физике занимается кинематика. В отличие от динамики, наука изучает, почему движутся тела. Она отвечает на вопрос, как они это делают. В данной статье рассмотрим, что такое ускорение и движение с постоянным ускорением.

Понятие об ускорении

Когда тело движется в пространстве, за некоторое время оно преодолевает определенный путь, который является длиной траектории. Чтобы рассчитать этот путь, пользуются понятиями скорости и ускорения.

Скорость как физическая величина характеризует быстроту во времени изменения пройденного пути. Скорость направлена по касательной к траектории в сторону перемещения тела.

Ускорение — это несколько более сложная величина. Говоря кратко, она описывает изменение скорости в рассматриваемый момент времени. Математическое выглядит так:

Чтобы яснее понять эту формулу, приведем простой пример: предположим, что за 1 секунду движения скорость тела увеличилась на 1 м/с. Эти цифры, подставленные в выражение выше, приводят к результату: ускорение тела в течение этой секунды было равно 1 м/с 2 .

Направление ускорения совершенно не зависит от направления скорости. Его вектор совпадает с вектором результирующей силы, которая вызывает это ускорение.

Следует отметить важный момент в приведенном определении ускорения. Эта величина характеризует не только изменение скорости по модулю, но и по направлению. Последний факт следует учитывать в случае криволинейного движения. Далее в статье будет рассматриваться только прямолинейное движение.

Скорость при движении с постоянным ускорением

Ускорение является постоянным, если оно в процессе движения сохраняет свой модуль и направление. Такое движение называют равноускоренным или равнозамедленным — все зависит от того, приводит ли ускорение к увеличению скорости или к ее уменьшению.

В случае движения тела с постоянным ускорением определить скорость можно по одной из следующих формул:

Первые два уравнения характеризуют равноускоренное перемещение. Отличие между ними заключается в том, что второе выражение применимо для случая ненулевой начальной скорости.

Третье уравнение — это выражение для скорости при равнозамедленном движении с постоянным ускорением. Ускорение при этом направлено против скорости.

Графиками всех трех функций v(t) являются прямые. В первых двух случаях прямые имеют положительный наклон относительно оси абсцисс, в третьем случае этот наклон является отрицательным.

Формулы пройденного пути

Для пути в случае движения с ускорением постоянным (ускорение a = const) получить формулы несложно, если вычислить интеграл от скорости по времени. Проделав эту математическую операцию для записанных выше трех уравнений, мы получим следующие выражения для пути L:

L = v 0 *t + a*t 2 /2;

L = v 0 *t - a*t 2 /2.

Графиками всех трех функций пути от времени являются параболы. В первых двух случаях правая ветвь параболы возрастает, а для третьей функции она постепенно выходит на некоторую константу, которая соответствует пройденному пути до полной остановки тела.

Решение задачи

Двигаясь со скоростью 30 км/ч, автомобиль начал ускоряться. За 30 секунд он прошел расстояние 600 метров. Чему было равно ускорение автомобиля?

В первую очередь переведем начальную скорость из км/ч в м/с:

v 0 = 30 км/ч = 30000/3600 = 8,333 м/с.

Теперь запишем уравнение движения:

L = v 0 *t + a*t 2 /2.

Из этого равенства выразим ускорение, получим:

a = 2*(L - v 0 *t)/t 2 .

Все физические величины в этом уравнении известны из условия задачи. Подставляем их в формулу и получаем ответ: a ≈ 0,78 м/с 2 . Таким образом, двигаясь с ускорением постоянным, автомобиль за каждую секунду увеличивал свою скорость на 0,78 м/с.

Рассчитаем также (для интереса), какую скорость он приобрел через 30 секунд ускоренного движения, получаем:

v = v 0 + a*t = 8,333 + 0,78*30 = 31,733 м/с.

Полученная скорость равна 114,2 км/ч.

КОНСПЕКТ

Лекций по физике

МЕХАНИКА

Кинематика

Кинематика - это раздел механики, изучающий механическое движение без анализа причин его вызывающих .

Механическое движение - простейшая форма движения тел, заключающаяся в изменении с течением времени положения одних тел относительно других, либо положения частей тела друг относительно друга. При этом тела взаимодействуют по законам механики.

Основные понятия :

Материальная точка – тело, размерами и формами которого можно пренебречь.

Тело отсчёта – тело, относительно которого рассматривается движение исследуемого тела (других тел).

Система отсчёта – совокупность тела отсчета, связанной с ним системы координат и часов, неподвижных относительно тела отсчета.

Радиус-вект ор – вектор, соединяющий начало координат с точкой расположения тела в данный момент времени.

Траектория – линия, которую описывает тело (центр масс ) в процессе своего движения,

Путь скалярная физическая величина, равная длине траектории, описываемой телом за рассматриваемый промежуток времени. ( , м)

Скорость – векторная физическая величина, характеризующая быстроту перемещения частицы по траектории, и направление, в котором движется частица в каждый момент времени, т.е. изменения положения со временем (υ, м/с).

Ускорение векторная физическая величина, равная отношению приращения скорости тела за некоторый промежуток времени к величине этого промежутка, т.е. быстроту (скорость) изменения скорости (а , м/с 2).

Вектор ускорения может меняться за счет изменения его направления, величины, или и того и другого. Если скорость уменьшается, то пользуются термином «замедление».

Скорость точки



Виды движений:

Равномерное движение

движение тела, при котором оно проходит одинаковые пути за любые равные промежутки времени.

1 – Координата точки в момент времени t.

2 – Координата точки в начальный момента времени t = 0

3 –Проекция вектора скорости на координатную ось

Движение с постоянным ускорением

a = = S = υ 0 t ± υ = υ 0 ± a t


Равномерное движение по окружности –




Динамика

Динамика - раздел механики, в котором изучаются причины возникновения механического движения.

Масса – скалярная физическая величина, являющаяся количественной мерой инертности тела, а также характеризующая количество вещества (m, кг),

Сила – векторная физическая величина, являющаяся мерой взаимодействия тел и приводящая к появлению у тела ускорения или к деформации тела. Сила характеризуется величиной, направлением и точкой приложения (F, Н).



СИЛЫ

Законы Ньютона:

Первый закон Ньютона:

в инерциальных системах отсчёта замкнутая система продолжает оставаться в состоянии покоя или прямолинейного равномерного движения .

Классическая механика Ньютона применима в особом классе инерциальных систем отсчёта .

Все инерциальные системы отсчёта движутся друг относительно друга прямолинейно и равномерно.

Второй закон Ньютона:

сила, действующая на систему извне, приводит к ускорению системы.

Третий закон Ньютона:

сила действия равна по модулю и противоположна по направлению силе противодействия; силы имеют одинаковую природу, но приложены к разным телам и не компенсируются.

Гравитационная сила


Силы в природе :




Закон сохранения импульса

Импульс – векторная физическая величина, равная произведению массы тела на его скорость: ,

Закон сохранения импульса:



Закон сохранения энергии

Энергия – характеристика движения и взаимодействия тел, их способность совершать изменения во внешнем мире (Е, Дж).

Под полной механической энергией понимают сумму кинетической и потенциальной энергий:

Полная механическая энергия

Потенциальная энергия

Кинетическая энергия

Потенциальная энергия тела - скалярная физическая величина, характеризующая способность тела (или материальной точки) совершать работу за счет своего нахождения в поле действия сил.

Кинетическая энергия тела - энергия механической системы, зависящая от скоростей движения её точек.

Закон сохранения механической энергии:

Абсолютная шкала температур

Введена англ. физиком У. Кельвином
- нет отрицательных температур
Единица абсолютной температуры в СИ: [T] = 1K (Кельвин)
Нулевая температура абсолютной шкалы – это абсолютный ноль (0К = -273 С), самая низкая температура в природе. В настоящее время достигнута самая низкая температура - 0,0001К.
По величине 1К равен 1 градусу по шкале Цельсия.



Связь абсолютной шкалы со шкалой Цельсия: в формулах абсолютная температура обозначается буквой «Т», а температура по шкале Цельсия буквой «t».


Основное уравнение МКТ газа

Основное уравнение МКТ связывает микропараметры частиц (массу молекулы, среднюю кинетическую энергию молекул, средний квадрат скорости молекул) с макропараметрами газа (р - давление, V - объем, Т - температура).


средняя кинетическая энергия поступательного движения молекул средняя квадратичная скорость

средняя кинетическая энергия поступательного движения молекул

Средняя квадратичная скорость : =

Внутренняя энергия одноатомного идеального газа : U = = pV


Газы характеризуются полной беспорядочностью расположения и движения молекул.
Расстояние между молекулами газа во много раз больше размеров молекул. Малые силы притяжения не могут удержать молекулы друг около друга, поэтому газы могут неограниченно расширяться.
Давление газа на стенки сосуда создается ударами движущихся молекул газа.

Жидкость

Тепловое движение молекул в жидкости выражено колебаниями около положения устойчивого равновесия внутри объема, предоставленного молекуле ее соседями.
Молекулы не могут свободно перемещаться по всему объему вещества, но возможны переходы молекул на соседние места. Этим объясняется текучесть жидкости, способность менять свою форму.

В жидкости расстояние между молекулами равно приблизительно диаметру молекулы. При уменьшении расстояния между молекулами (сжимании жидкости) резко увеличиваются силы отталкивания, поэтому жидкости несжимаемы.

Твердое тело

Тепловое движение молекул в твердом теле выражается только лишь колебаниями частиц (атомов, молекул) около положения устойчивого равновесия.

Большинство твердых тел имеет упорядоченное в пространстве расположение частиц, которые образуют правильную кристаллическую решетку. Частицы вещества (атомы, молекулы, ионы) расположены в вершинах - узлах кристаллической решетки. Узлы кристаллической решетки совпадают с положением устойчивого равновесия частиц.


Влажность воздуха:


Точка росы – температура, при которой пар становится насыщенным

Твердое тело

Основы термодинамики

Основные понятия:

Термодинамика – теория физики, изучающая тепловые свойства макроскопических систем, не обращаясь к микроскопическому строению тел, составляющих систему.

Термодинамическая система физическая система, состоящая из большого числа частиц (атомов и молекул), которые совершают тепловое движение, и взаимодействуя между собой, обмениваются энергиями.

Термодинамика рассматривает только равновесные состояния.

Равновесные состояния – состояния, в которых параметры термодинамической системы не меняются со временем.

Термодинамический процесс – переход системы из начального состояние в конечное через последовательность промежуточных состояний (любое изменение термодинамической системы).

Термодинамические процессы

Внутренняя энергия – энергия, состоящая из суммы энергий молекулярных взаимодействий и энергии теплового движения молекул, зависящая только от термодинамического состояния системы.

Способы изменения внутренней энергии :

  1. Совершение механической работы.
  2. Теплообмен (теплопередача)

Теплообмен – передача внутренней энергий от одного тела к другому.

Теплообмен

десублимация

сублимация

парообразование

конденсация

кристаллизация

плавление

Количество теплоты (Q, Дж) – мера энергии

Количество теплоты:

Первый закон термодинамики

Формулирока первого закона термодинамики:

Совершение работы

Q 2 – отдаваемая энергия (передаётся «остаток» энергии)

Тепловая машина должна работать циклически. По окончании цикла тело возвращается в своё первоначальное состояние, при этом внутренняя энергия принимает начальное значение. Работа цикла может совершаться только за счёт внешних источников, подводящих теплоту к рабочему телу.

Реальные тепловые двигатели работаю по разомкнутому циклу, т.е. после расширения газ выбрасывается, а в машину вводится новая порция газа.

Коэффициент полезного действия

КПД (η ) – отношение работы А совершённой рабочим телом за цикл, к количеству теплоты Q полученным рабочим телом за этот же цикл.

η = · 100% = · 100% = · 100%

КПД характеризует степень экономичности теплового двигателя, зависит только от температуры нагревателя и холодильника.

ü Для повышения КПД тепловой машины можно увеличить температуру нагревателя и уменьшить температуру холодильника;

ü КПД всегда < 1

Второй закон термодинамики

Второй закон термодинамики определяет направление процессов, происходящих в природе и связанных с превращением энергии.

Формулировки второго закона термодинамики:

  1. Несуществим термодинамический процесс, в результате которого происходила бы передача тепла от холодного тела к более горячему, без каких-либо других изменений в природе.
  2. В природе не возможен процесс, единственным результатом которого является превращение всей теплоты, полученной от некоторого тела, в работу.

Второй закон термодинамики отрицает возможность использования запасов внутренней энергии какого-либо источника без перевода её на более низкий уровень, т.е. без холодильника.

ОСНОВЫ ЭЛЕКТРОДИНАМИКИ

Электродинамика - наука о свойствах электромагнитного поля.

1. ЭЛЕКТРОСТАТИКА
- раздел электродинамики, изучает покоящиеся электрически заряженные тела.
Элементарные частицы могут иметь эл. заряд, тогда они называются заряженными; взаимодействуют друг с другом с силами, которые зависят от расстояния между частицами, но превышают во много раз силы взаимного тяготения (это взаимодействие называется электромагнитным).
Электрический заряд – основная скалярная физическая величина, определяющая интенсивность электромагнитных взаимодействий (q, Кл).

1 Кл - заряд, проходящий за 1 секунду через поперечное сечение проводника при силе тока 1 А.
Существует 2 знака эл.зарядов: положительный и отрицательный.
Частицы с одноименными зарядами отталкиваются, с разноименными - притягиваются.
Протон имеет положительный заряд, электрон - отрицательный, нейтрон - электрически нейтрален.
Элементарный заряд - минимальный заряд, разделить который невозможно.
Тело заряжено , если имеет избыток зарядов какого-либо знака:
отрицательно заряжено - если избыток электронов;
положительно заряжено - если недостаток электронов.
Электризация тел - один из способов получения заряженных тел.

При этом оба тела заряжаются, причем заряды противоположны по знаку, но равны по модулю.

МАГНИТЫ

Магниты имеют два полюса: S (южный) и N (северный), которые обладают наибольшей силой притяжения.

Одноимённые полюса магнита отталкиваются друг от друга, а разноимённые – притягиваются.

Характеристики магнитного поля:

Магнитный поток (Ф, Вб) – число линий магнитной индукции пронизывающих площадку.

Напряжённость магнитного поля (Н, А/м) – величина, которая характеризует магнитное поле в какой либо точке пространства, созданное макротоками (токи, текущие в проводах электрической цепи) в проводниках независимо от окружающей среды.

В = μ с Н

Для прямолинейного тока: Н = ;

в центре кругового тока: Н = ;

в центре соленоида: Н = .

Магнитная проницаемость вещества

Значение магнитной индукции зависит от среды, в которой существует магнитное поле. Отношение магнитной индукции В поля в данной среде к магнитной индукции В о в вакууме, характеризует магнитные свойства данной среды и называется относительной магнитной проницаемостью вещества - µ.

ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ

Способы получения индукционного тока:

Явление электромагнитной индукции – возникновение электрического тока в замкнутом проводящем контуре, который либо покоится в переменном во времени магнитном поле, либо движется в постоянном магнитном поле так, что число линий магнитной индукции, пронизывающих контур, меняется. Чем быстрее меняется число линий магнитной индукции, тем больше индукционный ток.

ЗАКОН ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ:

Электрический ток в цепи возможен, если на свободные заряды проводника действуют сторонние силы. Работа этих сил по перемещению единичного положительного заряда вдоль замкнутого контура называется ЭДС. При изменении магнитного потока через поверхность, ограниченную контуром, в контуре появляются сторонние силы, действие которых характеризуется ЭДС индукции.
Учитывая направление индукционного тока, согласно правилу Ленца:

ЭДС индукции в замкнутом контуре равна скорости изменения магнитного потока через поверхность, ограниченную контуром, взятой с противоположным знаком.

ВИХРЕВОЕ ЭЛЕКТРИЧЕСКОЕ ПОЛЕ

Причина возникновения электрического тока в неподвижном проводнике - электрическое поле.
Всякое изменение магнитного поля порождает индукционное электрическое поле независимо от наличия или отсутствия замкнутого контура, при этом если проводник разомкнут, то на его концах возникает разность потенциалов; если проводник замкнут, то в нем наблюдается индукционный ток.

Вихревые токи:

Индукционные токи в массивных проводниках называют токами Фуко. Токи Фуко могут достигать очень больших значений, т.к. сопротивление массивных проводников мало. Поэтому сердечники трансформаторов делают из изолированных пластин.
В ферритах - магнитных изоляторах вихревые токи практически не возникают.

Использование вихревых токов

Нагрев и плавка металлов в вакууме, демпферы в электроизмерительных приборах.

Вредное действие вихревых токов

Это потери энергии в сердечниках трансформаторов и генераторов из-за выделения большого количества тепла.

САМОИНДУКЦИЯ

Явление самоиндукции – возникновение ЭДС индукции в цепи, которое вызвано изменением магнитного поля тока, текущего в этой же цепи.

Собственное магнитное поле в цепи постоянного тока изменяется в моменты замыкания и размыкания цепи и при изменении силы тока.

Индуктивность (коэффициент самоиндукции) – физическая величина, показывающая зависимость ЭДС самоиндукции от размеров и формы проводника и от среды, в которой находится проводник.
Индуктивность катушки зависит от:
числа витков, размеров и формы катушки и от относительной магнитной проницаемости среды (возможен сердечник).

ЭНЕРГИЯ МАГНИТНОГО ПОЛЯ ТОКА

Вокруг проводника с током существует магнитное поле, которое обладает энергией.
Энергия магнитного поля равна собственной энергии тока.
Собственная энергия тока численно равна работе, которую должен совершить источник тока для преодоления ЭДС самоиндукции, чтобы создать ток в цепи.

Переменный ток

Переменный ток – ток, изменяющийся по направлению и величине по гармоническому закону.

Действующее значение силы тока – сила постоянного тока, выделяющего в проводнике за то же время такое же количество теплоты, что и переменный ток. I =

Мгновенное значение силы тока пропорционально мгновенному значению напряжения и совпадает по фазе: i = = I m cos ωt

Действующее значение переменного напряжения определяется аналогично действующему значению силы тока U =

Мгновенное значение напряжения меняется по гармоническому закону: u = U m cos ωt

Активные сопротивления электрические устройства, преобразующие электрическую энергию во внутреннюю (высокоомные провода, спирали нагревательных приборов, резисторы).

Мощность переменного тока.

При совпадении фаз колебаний силы тока и напряжения мгновенная мощность переменного тока равна:

p = iu = i 2 R= I m U m cos 2 ωt

Среднее значение мощности за период переменного тока равно: p =

Индуктивность и ёмкость в цепи переменного тока:

1. Индуктивность

В катушке, включённой в цепь переменного напряжения, сила тока меньше силы тока в цепи постоянного напряжения для этой же катушки. Следовательно, катушка в цепи переменного напряжения создает большее сопротивление, чем в цепи постоянного напряжения.

Напряжение опережает ток по фазе на π/2

Индуктивное сопротивление равно: Х L = ωL = 2πνL

Закон Ома: I m = , где Lω – индуктивное сопротивление.

2. Ёмкость

При включении конденсатора в цепь постоянного напряжения сила тока равна нулю, а при включении конденсатора в цепь переменного напряжения сила тока не равна нулю. Следовательно, конденсатор в цепи переменного напряжения создает сопротивление меньше, чем в цепи постоянного тока.

Емкостное сопротивление равно: Х С = =

Резонанс в электрической цепи.

Резонанс в электрической цепи – явление резкого возрастания амплитуды вынужденных колебаний тока при совпадении частот ω 0 = ω, где ω 0 – собственная частота колебательного контура, ω – частота питающего напряжения.

Принцип действия основан на явлении электромагнитной индукции.

Принцип действия на холостом ходу, т.е. без R н:

ε инд1 /ε инд2 = ω 1 /ω 2 = k, где ε инд1 и ε инд2 – ЭДС индукции в обмотках, ω 1 и ω 2 - число витков в обмотках,

k – коэффициент трансформации.

Если k > 1 , то трансформатор понижает напряжение; если k < 1 , то трансформатор повышает напряжение. При холостом ходе трансформатор потребляет из сети небольшую энергию, которая затрачивается на перемагничивание его сердечника.

Трансформаторы для преобразования переменных токов больших мощностей обладают высоким КПД.

Передача электрической энергии:

5. Электромагнитные колебания и волны

Колебательный контур – цепь, в которой энергия электрического поля могла бы превращаться в энергию магнитного поля и обратно.

Электрический колебательный контур – система, состоящая из конденсатора и катушки, соединённых между собой в замкнутую электрическую цепь

Свободные электромагнитные колебания – периодически повторяющиеся изменения силы тока в катушке и напряжения между обкладками конденсатора без потребления энергии от внешних источников.

Если контур «идеален», т.е. электрическое сопротивление равно 0 Х L = Х С ω =

Т = 2π – формула Томсона (период свободных электромагнитных колебаний в электрическом контуре)

Электромагнитное поле – особая форма материи, совокупность электрических и магнитных полей.

Переменные электрические и магнитные поля существуют одновременно и образуют единое электромагнитное поле.

ü При скорости заряда, равной нулю, существует только электрическое поле.

ü При постоянной скорости заряда возникает электромагнитное поле.

ü При ускоренном движении заряда происходит излучение электромагнитной волны, которая распространяется в пространстве с конечной скоростью.

Материальность электромагнитного поля:

ü можно зарегистрировать

ü существует независимо от нашей воли и желаний

ü имеет большую, но конечную скорость

Электромагнитные волны

Изменяющееся во времени и распространяющееся в пространстве (вакууме) электромагнитное поле со скоростью 3 · 10 8 м/с образует электромагнитную волну. Конечная скорость распространения электромагнитного поля приводит к тому, что электромагнитные колебания в пространстве распространяются в виде волн.

Вдали от антенны значения векторов Е и В совпадает по фазе.

Главное условие возникновения электромагнитной волны – ускоренное движение электрических зарядов.

Скорость электромагнитной волны: υ = νλ λ = = υ2π

Свойства волн:

Ø отражение, преломление, интерференция, дифракция, поляризация;

Ø давление на вещество;

Ø поглощение средой;

Ø конечная скорость распространения в вакууме с;

Ø вызывает явление фотоэффекта;

Ø скорость в среде убывает.

6. ВОЛНОВАЯ ОПТИКА

Оптика – раздел физики, изучающий световые явления.
По современным представлениям свет имеет двойственную природу (корпускулярно-волновой дуализм): свет обладает волновыми свойствами и представляет собой электромагнитные волны, но одновременно является и потоком частиц – фотонов. В зависимости от светового диапазона проявляются в большей мере те или иные свойства.

Скорость света в вакууме:

При решении задач для вычислений берут обычно величину c = 3 · 10 8 км/с.

ОТРАЖЕНИЕ СВЕТА

Волновая поверхность – множество точек, колеблющихся в одинаковой фазе.
Принцип Гюйгенса: Каждая точка, до которой дошло возмущение, сама становится источником вторичных сферических волн.
Законы отражения света
MN - отражающая поверхность
АА 1 и ВВ 1 - лучи падающей плоской волны
АА 2 и ВВ 2 - лучи отраженной плоской волны
АС - волновая поверхность падающей плоской волны перпендикулярна падающим лучам
DB - волновая поверхность отраженной плоской волны перпендикулярная отраженным лучам
α - угол падения (между падающим лучом и перпендикуляром к отражающей поверхности)
β - угол отражения (между отраженным лучом и перпендикуляром к отражающей поверхности)
Законы отражения:
1. Падающий луч, луч отраженный и перпендикуляр, восстановленный в точке падения луча, лежат в одной плоскости.
2. Угол падения равен углу отражения.

ПРЕЛОМЛЕНИЕ СВЕТА

Преломление света – это изменение направления распространения света при прохождении через границу раздела двух сред.
Законы преломления света:

1. Луч падающий и луч преломленный лежат в одной плоскости с перпендикуляром к поверхности раздела двух сред, восстановленным в точке падения луча.
2. Отношение синуса угла падения к синусу угла преломления для двух данных сред есть величина постоянная

где n – это относительный показатель преломления (иначе показатель преломления второй среды относительно первой)
Показатель преломления

Физический смысл: он показывает во сколько раз скорость света в той среде, из которой луч выходит, больше скорости света в той среде, в которую он входит.

ПОЛНОЕ ВНУТРЕННЕЕ ОТРАЖЕНИЕ СВЕТА

Пусть абсолютный показатель преломления первой среды больше, чем абсолютный показатель преломления второй среды
, то есть первая среда оптически более плотная.
Тогда, если направит