Где происходит газообмен при дыхании. Газообмен в тканях и легких

Где происходит газообмен при дыхании. Газообмен в тканях и легких
Где происходит газообмен при дыхании. Газообмен в тканях и легких

Газообмен

Для обеспечения жизнедеятельности между организмом и окружающей средой должен непрерывно происходить газообмен . Аэробные организмы в результате диффузии поглощают кислород (из воды, в которой он растворен, либо из атмосферы) и выделяют углекислоту. Дыхательная поверхность, на которой происходит газообмен, должна быть:

Проницаемой для O 2 и CO 2 ;

Тонкой – диффузия эффективна только на небольших расстояниях;

Влажной – эти газы диффундируют в растворе;

Большой – для поддержания достаточной скорости газообмена.

Интенсивность метаболизма растений невысока, кислорода им требуется сравнительно немного. Газообмен осуществляется путём диффузии газов через всю поверхность; у крупных растений для этих целей служат устьица листьев и трещины в коре. Клетки, содержащие хлорофилл , могут потреблять для дыхания только что выработанный ими кислород.

У одноклеточных животных газообмен происходит через клеточную мембрану. Наиболее примитивные многоклеточные – кишечнополостные , плоские черви – также обеспечивают свои потребности в кислороде, поглощая его каждой клеткой, находящейся в контакте со средой.

У более сложных организмов появляется большое количество клеток, не контактирующих со средой, и простая диффузия становится неэффективной. Необходима специальная дыхательная система , которая будет эффективно поглощать кислород и выделять углекислоту. Как правило, эта система оказывается связанной с кровеносной системой , обеспечивающей доставку кислорода тканям и клеткам. Растворимость кислорода в крови составляет 0,2 мл на 100 мл крови, однако наличие дыхательных пигментов способно в десятки и сотни раз увеличить эффективность этого процесса. Наиболее известным дыхательным пигментом является гемоглобин .

Пигмент Металл Цвет (с/без O 2) Животные Растворимость O 2 (мл на 100 мл крови)
Гемоглобин Железо Оранжево-красный/пурпурно-красный Некоторые моллюски и кольчатые черви, хордовые 2–25
Гемоцианин Медь Синий/бесцветный Улитки, головоногие, ракообразные 2–8
Гемоэритрин Железо Красный/бесцветный Некоторые кольчатые черви 2
Хлорокруорин Железо Красный/зелёный Некоторые кольчатые черви 9

Некоторые дыхательные пигменты

Рассмотрим некоторые наиболее типичные дыхательные системы.

В тело насекомых воздух попадает через специальные отверстия – дыхальца . Они открываются в воздушные полости, от которых отходят особые трубочки – трахеи . Трахеи укреплены хитином и всегда остаются открытыми. В каждом сегменте тела они разветвляются на многочисленные мелкие трубочки – трахеолы , через которые кислород поступает прямо к тканям; необходимости в его транспортировки кровью нет. Трахеолы заполнены водянистой жидкостью, через неё диффундируют кислород и углекислота. При активной работе мышц жидкость всасывается в ткани, и кислород попадает непосредственно к клеткам уже в газообразном состоянии. Трахейная система дыхания весьма эффективна, однако наличие в дыхательной цепи процесса диффузии ограничивает размеры насекомого (точнее, его толщину).

Газообмен у рыб происходит при помощи специальных дыхательных органов – жабр . Каждая жабра поддерживается вертикальным хрящём – жаберной дугой . У костных рыб жаберная дуга состоит из костной ткани. От перегородки, лежащей над жаберной дугой, отходит ряд горизонтальных складок – жаберных лепестков , на каждом из которых образуются вертикальные вторичные лепестки. Свободные края жаберных перегородок вытянуты и работают как откидные клапаны. Когда дно ротовой полости и глотки опускается, давление в них уменьшается, и в жабры через рот и брызгальца устремляется вода. Клапан при этом предотвращает попадание в жабры воды с другой стороны. Многочисленные капилляры, пронизывающие жабры, насыщаются здесь кислородом и объединяются в жаберные артерии, выносящие из жабр богатую кислородом кровь. Отметим, что дыхательная система костных рыб более совершенна, чем у рыб хрящевых, так как у костных рыб жабры имеют бóльшую площадь поверхности, а движение крови навстречу току воды обеспечивает более эффективный обмен газов.

Амфибии получают кислород тремя способами: через кожу, рот и лёгкие. При кожном и ротовом дыхании газ поглощается влажным эпителием, выстилающим кожу или ротовую полость. Заметные глазу движения горла лягушки – это именно ротовое дыхание. Поступающий в рот воздух может также через гортань, трахею и бронхи попадать в лёгкие. Лёгкие у лягушки представляют собой пару полых мешков, стенки которых образуют многочисленные складки, пронизанные кровеносными капиллярами. В результате мышечных сокращений происходит вдох и выдох, лёгкие наполняются воздухом, кислород из него поступает в кровь.

У высших форм позвоночных кожное дыхание отсутствует, основным дыхательным органом становятся лёгкие. Они имеют гораздо большее количество складок, чем лёгкие амфибий. У птиц появились также воздушные мешки, благодаря которым через лёгкие и во время вдоха, и во время выдоха проходит богатый кислородом воздух; это увеличивает эффективность газообмена.

У млекопитающих воздух поступает внутрь через ноздри; небольшие волоски задерживают посторонние частицы, а ресничный эпителий, которым выстланы носовые ходы, увлажняет воздух, прогревает его, а также улавливает частички, которым удалось проскользнуть через волоски. Из носа воздух попадает в глотку , а затем в гортань . Хрящевой клапан ( надгортанник ) защищает дыхательные пути от попадания в них пищи. В полости гортани находятся голосовые связки ; когда выдыхаемый воздух проходит сквозь голосовую щель, возникают звуковые волны. С изменением натяжения связок меняется высота издаваемого звука.

Из гортани воздух попадает в трубковидную трахею . Её стенки покрыты ресничным эпителием, собирающим попавшие в трахею пылинки и микробы. Стенки трахеи (так же, как и гортани) выполнены из хрящевой ткани, за счёт этого она не опадает при вдохе. На нижнем конце трахея разветвляется на два бронха. Бронхи разделяются на более тонкие бронхиолы ; у самых маленьких из них (диаметром 1 мм и меньше) хрящевая ткань отсутствует. Бронхиолы разветвляются, в свою очередь, на многочисленные альвеолярные ходы, заканчивающиеся мешочками, выстланными соединительной тканью, – альвеолами . В лёгких млекопитающего могут быть сотни миллионов альвеол, общая площадь их поверхности такова, что ими можно покрыть целое футбольное поле. Толщина стенки альвеолы составляет всего 0,0001 мм. Наружная сторона альвеол покрыта густой сетью кровеносных капилляров. Поглощаясь влажным эпителием, кислород диффундирует в плазму крови и там соединяется с гемоглобином. Углекислый газ диффундирует в обратном направлении. Диаметр капилляров меньше диаметра эритроцитов; это обеспечивает тесное соприкосновение эритроцитов с поверхностью альвеол.

Лёгкие отделены от стенок грудной клетки плевральной полостью . Она непроницаема для воздуха; давление в ней на 3–4 мм рт. ст. ниже, чем в лёгких, за счёт чего последние заполняют почти всю грудную клетку. Вентиляция лёгких осуществляется благодаря одновременному сокращению диафрагмы и наружных межрёберных мышц. Объём грудной клетки увеличивается, давление уменьшается, и воздух поступает внутрь. В процессе выдоха диафрагма и наружные мышцы возвращаются в прежнее положение, а внутренние межрёберные мышцы сокращаются. Грудная клетка становится меньше и воздух выталкивается из лёгких. При больших физических нагрузках выдох становится более активным и требует дополнительных затрат энергии.

При недостаточной насыщенности воздуха кислородом (например, высоко в горах) начинается гипоксия , проявляющаяся в недомогании и чувстве сильной усталости. Со временем дыхательная система может приспособиться к небольшому содержанию кислорода – в таких случаях говорят, что организм акклиматизировался в новых условиях.

Млекопитающие, способные долгое время оставаться под водой (киты , тюлени), при нырянии рефлекторно уменьшают частоту сердечных сокращений, их кровеносные каналы сужаются, и кровью снабжаются только самые важные для жизни органы. Первый вдох после выныривания служит сигналом для увеличения частоты сердечных сокращений.

Дыхание – неотъемлемый и жизненно важный процесс для любого живого организма. Для насыщения кислородом органов и тканей требуется оптимальный состав воздуха и правильная работа тела человека. В таком случае здоровый организм чувствует себя бодро и активно, без патологических признаков гипоксии.

Физиологический вдох

Процессы газообмена в легких и тканях представляют собой сложную цепь биохимических реакций и соединений. Воздух поступает через верхние дыхательные пути в нижние его отделы. Бронхиальное дерево проводит газовую смесь к конечным своим пунктам – альвеолам. Альвеолы состоят из альвеолоцитов, которые изнутри выстланы поверхностно-активным веществом – сурфактантом, а снаружи покрывает базальный слой.

Вся поверхность легких как будто окутана сетью плотно прилегающих капилляров, через сосудистую стенку которых проникает так необходимый организму кислород. Граница альвеолярной стенки и стенки капилляра очень мала – составляет 1 мкм, что обеспечивает полноценный процесс, где происходит газообмен.


Акт вдоха выполняется за счет сокращения мышц грудной клетки, в том числе и диафрагмы – большой мышцы, находящейся на границе грудной и брюшной полости. При ее сокращении происходит нагнетание воздушной смеси за счет разницы атмосферного и внутригрудного давления. Выдох же, наоборот, делается пассивно, благодаря эластичности легких. Исключением является активная физическая нагрузка, когда человек усиливает работу гладкой и скелетной мускулатуры, принудительно сокращая ее.

Центр управления

Процесс газообмена в легких происходит путем регуляции центральной нервной системой. В стволовой части головного мозга, которая находится на границе со спинным мозгом, есть конгломераты нервных клеток – они способствуют фазе вдоха и выхода, отдавая специальные импульсы.

Такой отдел называется дыхательным центром. Его особенность заключается в автономности – импульсы вырабатываются автоматически, что объясняет дыхание человека во время сна. При повышении уровня углекислого газа в крови дыхательный центр побуждает к выполнению вдоха, где при растяжении в легких происходит активный обмен газами между кровью и клетками альвеол.

Существуют скопления нервных клеток в коре головного мозга, гипоталамусе, варолиевом мосту, спинном мозге, отвечающие за произвольную регуляцию дыхания. Однако они непрерывно связаны нервными волокнами основного центра дыхания в стволе, при повреждении которого наступает остановка дыхания.

Механизм

Альвеолоциты и стенка сосудов служат мостиком, где происходит газообмен. Кислород устремляется в сторону капиллярной сети, а углекислый газ в альвеолы – это объясняется разницей давления между воздухом и кровью. Схема диффундирования газов подчиняется законам физики.

Поступивший кислород присоединяется к белку эритроцитов – гемоглобину. Данное соединение именуется оксигемоглобин, а кровь, насыщенная им – артериальная. Она выталкивается в левое предсердие и желудочек, откуда аортой и ее ответвлениями доставляется к органам.

Затем окисленные соединения собираются в венозные шунты и через полые вены, правое предсердие и желудочек доставляются к дыхательной системе. Этот процесс должен способствовать газообмену в тканях, происходит насыщение и обратный захват продуктов метаболизма.

Газообмен в тканях – молниеносный процесс, выполняется за 0,1 с. Организм так устроен, что за такое малое время способен выполнить важнейшую жизненную функцию организма. При снижении напряжения оксигена в тканях происходит развитие патологии, которая называется гипоксия. Она может служить признаком нарушения:

  • Вентиляционной способности легочной ткани.
  • Недостаточности кровообращения.
  • Не полной работы ферментативной системы.

Функции дыхательных путей многогранны и включают в себя не только регуляцию газов крови, но и иммунный ответ, отвечают за буферную систему и кислотно-основное состояние, выведение токсических веществ, реологические свойства крови.

ГАЗООБМЕН (биологический), обмен газов между организмом и внешней средой в процессе дыхания. В организмы поступает кислород (О 2), который затем используется для окисления соединений, вовлекаемых в обмен веществ; в результате освобождается энергия, необходимая для жизнедеятельности, и образуются конечные продукты обмена, в том числе диоксид углерода (СО 2) и незначительное количество других газообразных соединений. Организмы получают необходимый им О 2 либо из атмосферы, либо из воды, в которой он растворён. Газообмен осуществляется путём диффузии газов непосредственно через поверхность клеток.

Газообмен у животных. У простейших, кишечнополостных и червей газообмен происходит через покровы тела. У насекомых и паукообразных появляется система трубочек (трахей), с помощью которых О 2 поступает непосредственно к тканям тела. У ракообразных, рыб и некоторых других организмов для газообмена служат жабры, а у большинства позвоночных - лёгкие. У земноводных помимо лёгких в газообмене участвуют кожа и эпителий, выстилающий ротовую полость.

У многих животных и человека газообмен осуществляется при участии дыхательных пигментов (металлопротеинов крови или гемолимфы), способных обратимо связываться с О 2 и служить его переносчиками. При высоких концентрациях О 2 пигмент легко его присоединяет, а при низких - отдаёт (в связывании О 2 участвуют главным образом ионы железа или меди). У позвоночных и многих беспозвоночных животных таким пигментом является гемоглобин, у ряда беспозвоночных - гемоцианин, гемоэритрин и хлорокуорин. Лишь незначительная доля (около 5%) всего поступающего из клеток в кровь СО 2 находится в растворённом состоянии; основная его часть (около 80%) при участии фермента карбоангидразы превращается в угольную кислоту, которая диссоциирует на карбонатные и гидрокарбонатные ионы; таким образом, существует равновесие между растворёнными СО 2 , Н 2 СО 3 , НСО - 3 и СО 2- 3 . Кроме того, 6-7% СО 2 может взаимодействовать также с аминогруппами белков (в том числе гемоглобина) с образованием карбаминовых соединений. Отношение удаляемого из организма СО 2 к поглощённому за то же время О 2 называется дыхательным коэффициентом, который равен примерно 0,7 при окислении жиров, 0,8 при окислении белков и 1,0 при окислении углеводов. Количество энергии, освобождающейся при потреблении 1 л О 2 , составляет 20,9 кДж (5 ккал) при окислении углеводов и 19,7 кДж (4,7 ккал) при окислении жиров. Таким образм, по потреблению О 2 в единицу времени и по дыхательному коэффициенту можно рассчитать количество освободившейся в организме энергии, оценить интенсивность окислительно-восстановительных процессов, происходящих во всех органах и тканях.

Газообмен у животных уменьшается с понижением температуры тела, а при её повышении - увеличивается. У человека потребление О 2 может возрастать с 200-300 мл/мин в состоянии покоя до 2000-3000 мл/мин при физической работе, а у хорошо тренированных спортсменов - до 5000 мл/мин. Соответственно увеличиваются выделение СО 2 и расход энергии; происходят сдвиги дыхательного коэффициента. Сравнительное постоянство газообмена обеспечивается приспособительными (компенсаторными) реакциями систем организма, участвующих в газообмене и регулируемых нервной системой как непосредственно, так и через эндокринную систему. Газообмен у человека и животных исследуют в условиях полного покоя, натощак, при температуре 18-22 °С. При исследованиях газообмена определяют объём вдыхаемого и выдыхаемого воздуха и его состав (при помощи газовых анализаторов), что позволяет вычислять количества потребляемого О 2 и выделяемого СО 2 . Смотри также Дыхание, Дыхания органы.

Лит.: Физиология человека. М., 1986. Т. 4; Уэст Дж. Физиология дыхания. М., 1988; Эккерт Р., Рэнделл Д., Огастин Дж. Физиология животных. М., 1992. Т. 2; Физиология человека. М., 1996. Т. 2. Г. Г. Исаев.

Газообмен у растений сопровождает как дыхание, так и фотосинтез: во время фотосинтеза поглощается СО 2 , выделяется О 2 , а при дыхании - наоборот. Как все живые организмы, растения дышат 24 ч в сутки, фотосинтез же идёт только на свету. Днём, как правило, фотосинтез идёт быстрее дыхания, к вечеру скорость его снижается и в определённый момент становится равной скорости происходящего одновременно дыхания. При этом газообмен не регистрируется (состояние компенсации). При дальнейшем уменьшении освещённости дыхание начинает преобладать, а в темноте происходит только выделение СО 2 , образующегося в результате дыхания.

Газообмен листьев, молодых стеблей, цветков происходит через устьица (с помощью открывания и закрывания последних растение регулирует скорость газообмена). На старых стеблях устьица заменяются всегда открытыми чечевичками (отверстиями в пробке), поэтому газообмен старых стеблей растение регулировать не может. Скорость газообмена различна у растений разных видов, в разных органах и тканях одного растения. Она зависит от внешних факторов и физиологического состояния клеток. По количеству выделенного или поглощённого О 2 или СО 2 определяют скорость фотосинтеза или дыхания того или иного растения или органа.

Что такое газообмен? Без него не сможет обойтись практически ни одно живое существо. Газообмен в легких и тканях, а также крови помогает насыщать клетки питательными веществами. Благодаря ему мы получаем энергию и жизненные силы.

Что такое газообмен?

Для существования живым организмам необходим воздух. Он представляет собой смесь из множества газов, основную долю которых составляют кислород и азот. Оба эти газа являются важнейшими компонентами для обеспечения нормальной жизнедеятельности организмов.

В ходе эволюции разные виды выработали свои приспособления для их получения, у одних развились легкие, у других - жабры, а третьи используют только кожные покровы. При помощи этих органов осуществляется газообмен.

Что такое газообмен? Это процесс взаимодействия внешней среды и живых клеток, в ходе которого происходит обмен кислорода и углекислого газа. Во время дыхания вместе с воздухом в организм поступает кислород. Насыщая все клетки и ткани, он участвует в окислительной реакции, превращаясь в углекислый газ, который выводится из организма вместе с другими продуктами метаболизма.

Газообмен в легких

Каждый день мы вдыхаем больше 12 килограмм воздуха. В этом нам помогают легкие. Они являются самым объемным органом, способным вместить до 3 литров воздуха за один полный глубокий вдох. Газообмен в легких происходит при помощи альвеол - многочисленных пузырьков, которые переплетены с кровеносными сосудами.

Воздух попадает в них через верхние дыхательные пути, проходя трахею и бронхи. Соединенные с альвеолами капилляры забирают воздух и разносят его по кровеносной системе. В то же время они отдают альвеолам углекислый газ, который покидает организм вместе с выдохом.

Процесс обмена между альвеолами и сосудами называется двусторонней диффузией. Он происходит всего за несколько секунд и осуществляется благодаря разнице в давлении. У насыщенного кислородом атмосферного воздуха оно больше, поэтому он устремляется к капиллярам. Углекислый газ имеет меньшее давление, отчего и выталкивается в альвеолы.

Кровообращение

Без кровеносной системы газообмен в легких и тканях был бы невозможен. Наше тело пронизано множеством кровеносных сосудов различной длины и диаметра. Они представлены артериями, венами, капиллярами, венулами и т. д. В сосудах кровь непрерывно циркулирует, способствуя обмену газов и веществ.

Газообмен в крови осуществляется при помощи двух кругов кровообращения. При дыхании воздух начинается двигаться по большому кругу. В крови он переносится, прикрепляясь к специальному белку гемоглобину, который содержится в эритроцитах.

Из альвеол воздух попадает в капилляры, а затем в артерии, направляясь прямо к сердцу. В нашем организме оно исполняет роль мощного насоса, перекачивая насыщенную кислородом кровь к тканям и клеткам. Они, в свою очередь, отдают кровь, наполненную углекислым газом, направляя её по венулам и венам обратно к сердцу.

Проходя через правое предсердие, венозная кровь завершает большой круг. В правом желудочке начинается По нему кровь перегоняется в Она движется по артериям, артериолам и капиллярам, где совершает обмен воздухом с альвеолами, чтобы начать цикл заново.

Обмен в тканях

Итак, мы знаем, что такое газообмен легких и крови. Обе системы переносят газы и обмениваются ими. Но ключевая роль принадлежит тканям. В них происходят главные процессы, изменяющие химический состав воздуха.

Насыщает клетки кислородом, который запускает в них целый ряд окислительно-восстановительных реакций. В биологии они называются циклом Кребса. Для их осуществления необходимы ферменты, которые также приходят вместе с кровью.

В ходе образуются лимонная, уксусная и другие кислоты, продукты для окисления жиров, аминокислот и глюкозы. Это один из важнейших этапов, который сопровождает газообмен в тканях. Во время его протекания освобождается энергия, необходимая для работы всех органов и систем организма.

Для осуществления реакции активно используется кислород. Постепенно он окисляется, превращаясь в углекислый газ - СО 2 , который выделяется из клеток и тканей в кровь, потом в легкие и атмосферу.

Газообмен у животных

Строение организма и систем органов у многих животных значительно варьируется. Наиболее схожими с человеком являются млекопитающие. Небольшие животные, например планарии, не имеют сложных систем для обмена веществами. Для дыхания они используют внешние покровы.

Амфибии для дыхания используют кожные покровы, а также рот и легкие. У большинства животных, обитающих в воде, газообмен осуществляется при помощи жабр. Они представляют собой тонкие пластины, соединенные с капиллярами и переправляющие в них кислород из воды.

Членистоногие, например многоножки, мокрицы, пауки, насекомые, не обладают легкими. По всей поверхности тела у них расположены трахеи, которые направляют воздух прямо к клеткам. Такая система позволяет им быстро передвигаться, не испытывая одышки и усталости, ведь процесс образования энергии происходит быстрее.

Обмен газов у растений

В отличие от животных, у растений газообмен в тканях включает потребление и кислорода, и углекислого газа. Кислород они потребляют в процессе дыхания. Растения не обладают для этого специальными органами, поэтому воздух поступает в них через все части тела.

Как правило, листья имеют наибольшую площадь, и основное количество воздуха приходится именно на них. Кислород поступает в них через небольшие отверстия между клетками, называемые устьицами, перерабатывается и выводится уже в виде углекислого газа, как и у животных.

Отличительной особенностью растений является способность к фотосинтезу. Так, они могут преобразовывать неорганические компоненты в органические при помощи света и ферментов. Во время фотосинтеза поглощается углекислый газ и производится кислород, поэтому растения являются настоящими «фабриками» по обогащению воздуха.

Особенности

Газообмен является одной из важнейших функций любого живого организма. Он осуществляется при помощи дыхания и кровообращения, способствуя освобождению энергии и обмену веществ. Особенности газообмена заключаются в том, что он не всегда протекает одинаково.

В первую очередь он невозможен без дыхания, его остановка в течение 4 минут способна привести к нарушениям работы клеток мозга. В результате этого организм умирает. Существует множество заболеваний, при которых наблюдается нарушение газообмена. Ткани не получают достаточно кислорода, что замедляет их развитие и функции.

Неравномерность газообмена наблюдается и у здоровых людей. Он значительно увеличивается при усиленной работе мышц. Буквально за шесть минут он достигает предельной мощности и придерживается её. Однако при усилении нагрузки количество кислорода может начать увеличиваться, что также неприятно скажется на самочувствии организма.