Нервные узлы сердца. Функции сердца

Нервные узлы сердца. Функции сердца
Нервные узлы сердца. Функции сердца
  • 7. Эпифиз. Гормоны эпифиза, их значение.
  • 9. Надпочечники. Гормоны мозгового и коркового слоя надпочечников, их роль в в адаптации арганизма при действии стрессовых факторов.
  • 10. Физиология и патология поджелудочной железы. Регуляция углеводного обмена в норме и патологии. Сахарный диабет и его профилактика.
  • 12. Морфологический и химический состав крови. Значение крови.
  • 13. Иммунитет, его виды. Механизмы неспецифического и специфического иммунитета.
  • 15. Эритроциты, особенности строения и значения. Группы крови, их характериристики. Понятие о резус-факторе и резус-конфликте.
  • 16.Лейкоциты, особенности строения и значения. Виды лейкоцитов. Лейкоцитарная формула. Изменение лейкоцитарной формулы при заболеваниях.
  • 18. Фазы работы сердца. Систолический и минутный объем крови.
  • 19. Проводящая система сердца. Узлы проводящей системы сердца, их значение.
  • 20. Свойства сердедечной мышцы. Электрокардиограмма, характеристика ее зубцов и отрезков. Регуляция работы сердца.
  • 21. Понятие дыхания, его значение. Этапы дыхания.
  • 22. Механизм газообмена в легких и тканях.
  • 24. Нарушение функций организма при гопоксии.
  • 25. Компенсаторные механизмы при гипоксии.
  • 26. Белковый обмен и его регуляция.
  • 27. Углеводный и жировой обмены, их регуляция.
  • 28. Обмен воды и минеральных солей, его регуляция.
  • 29. Выделительная система человека. Нефрон – основная структурная и функциональная единица почек. Фазы мочеобразования.
  • 30. Нервная и гуморальная регуляция деятельности почек.
  • 31. Понятие о терморегуляции. Химическая и физическая терморегуляция.
  • 32. Опорно-двигательный аппарат. Его значение. Химический состав косте. Строение скелета человека.
  • 33. Типы соединения костей. Строение суставов.
  • 34. Мышечная система. Основные группы мышц человека. Статистическая и динамическая работа мышц. Роль мышечных движений в развитии организма. Понятие осанки. Профилактика нарушений осанки.
  • 35. Определение понятия бользни и здоровья. Патологический процесс и патологическое состояние – причина дефективности и инвалидности.
  • 36.Врождённые пороки развития,причины. Виды впр и их профилактика.
  • 38.Причины и условия возникновения болезни. Болезнетворные факторы внешней среды: механические, физические, химические, биологические, социальные.
  • 41.Расстройства кровообращения и микроциркуляции при воспалении
  • 42.Патологические изменения состава крови:морфологического,химического,рН,свертываемости,соэ.
  • 45.Лейкозы
  • 48.Пороки сердца,причины,профилактика.
  • 49. Местные расстройства кровообращения: артериальная и венозная гиперемия, ишемия, тромбоз, эмболия.
  • 50 Проявления нарушений внешнего дыхания: апноэ, брадипноэ, тахипноэ, одышка, виды периодического, патологического дыхания.
  • 51 Основные причины и виды нарушений пищеварения.
  • 56.Нарушение водно-солевого обмена
  • 57.Основные причины нарушений системы мочеобразования. Почечная недостаточность: острая и хроническая формы.
  • 58.Патология терморегуляции. Гипо- и гипертермия, их стадии
  • 59.Лихорадка, ее стадии и виды. Приспособительное и компенсаторное значение лихорадки.
  • 60.Нарушения ода. Деформация черепа,позвоночника,конечностей. Профилактика этих нарушений.
  • 63 Общая характеристика опухолей
  • 64Формы роста опухолей
  • 65. Характеристика доброкачественных и злокачественных опухолей.
  • 66.Этиология и патогенез опухолей.
  • 67. Реактивность организма,её виды и значение в патологии.
  • 68. Механизмы восстановления нарушенных функций организма. Понятие о компенсации функций, структурно-функциональные основы компенсации.
  • 19. Проводящая система сердца. Узлы проводящей системы сердца, их значение.

    Проводящая система сердца начинается синусовым узлом, который расположен в верхней части правого предсердия. Его длина 10-20 мм, ширина 3-5 мм. Именно в нем возникают импульсы, которые вызывают возбуждение и сокращение всего сердца. Нормальный автоматизм синусового узла составляет 50-80 импульсов в минуту. Синусовый узел является автоматическим центром I порядка.

    Импульс, возникший в синусовом узле мгновенно распространяется по предсердиям, заставляя их сократиться. Но распространиться дальше и сразу же возбудить желудочки сердца эта волна не может, так как миокард предсердий и желудочков разделен фиброзной тканью, которая не пропускает электрические импульсы. И только в одном месте этой преграды не существует. Туда и устремляется волна возбуждения. Но именно в этом месте находится следующий узел проводящей системы, который называется атриовентрикулярным (длина около 5 мм, толщина - 2 мм). В нем происходит задержка волны возбуждения и фильтрация входящих импульсов.

    Далее нижняя часть узла, утончаясь, переходит в пучок Гиса (длина 20 мм). В последующем пучок Гиса разделяется на две ножки - правую и левую. Правая ножка проходит по правой стороне межжелудочковой перегородки и разветвляясь ее волокна (волокна Пуркинье) пронзают миокард правого желудочка. Левая ножка проходит по левой половине межжелудочковой перегородки и делится на переднюю и заднюю ветви, которые снабжают волокнами Пуркинье миокард левого желудочка. После задержки в результате прохождения атриовентрикулярного узла волна возбуждения, распространяясь по ножкам пучка Гиса и волокнам Пуркинье, мгновенно охватывает всю толщу миокарда желудочков, вызывая их сокращение. Задержка импульса имеет огромное значение и не дает сократиться предсердиям и желудочкам одновременно - сперва сокращаются предсердия, и только вслед за этим - желудочки сердца.

    В атриовентрикулярном узле, так же как и в синусовом узле, имеются два вида клеток - Р и Т. Атриовентрикулярный узел вместе с начальной частью пучка Гиса является автоматическим центром II порядка, который может самостоятельно вырабатывать импульсы с частотой 35-50 в минуту.

    Конечная часть пучка Гиса, его ножки и волокна Пуркинье также обладают автоматизмом, однако могут вырабатывать импульсы лишь с частотой 15-35 в минуту и являются автоматическим центром III порядка.

    Между автоматическими центрами I, II и III порядков возникают следующие взаимодействия. В норме импульс, возникающий в синусовом узле, распространяется на предсердия и желудочки, вызывая их сокращения. Проходя на своем пути автоматические центры II и III порядков импульс каждый раз вызывает разрядку этих центров. После этого в автоматических центрах II и III порядков снова начинается подготовка очередного импульса, которая каждый раз вновь прерывается после прохождения возбуждения из синусового узла. По сути дела, в норме автоматический центр I порядка подавляет активность автоматических узлов II и III порядков. И только в случае отказа синусового узла или нарушения проведения его импульсов на нижележащие отделы включается автоматический узел II порядка, а при его отказе - автоматический узел III порядка.

    Регуляция и координация сократительной функции сердца осуществляются его проводящей системой. Проводя­щая система сердца образована атипичными кардиомиоцитами (сердечные проводящие кардиомиоциты). Эти кардиомиоциты богато иннервированы, имеют небольшие размеры (длина - около 25 мкм, толщина - 10 мкм) по сравнению с кардиомио­цитами миокарда. Клетки проводящей системы не имеют Т-тру-бочек, соединяются между собой не только концами, но и боко­выми поверхностями. Эти клетки содержат значительное коли­чество цитоплазмы и мало миофибрилл. Клетки проводящей системы обладают способностью проводить раздражение от нервов сердца к миокарду предсердий и желудочков. Сердце обладает автоматизмом - способностью самостоятельно сокращаться через определенные промежутки времени. Это становится возможным благодаря возникновению электрических импульсов в самом сердце. Оно продолжает биться при перерезке всех нервов, которые к нему подходят.Импульсы возникают и проводятся по сердцу с помощью так называемой проводящей системы сердца. Рассмотрим компоненты проводящей системы сердца:синусно-предсердный узел,предсердно-желудочковый узел,пучок Гиса с его левой и правой ножкой,волокна Пуркинье. 1)синусно-предсердный узел (= синусовый, синоатриальный)- источник возникновения электрических импульсов в норме. Именно здесь импульсы возникают и отсюда распространяются по сердцу (рисунок с анимацией внизу). Cинусно-предсердный узел расположен в верхней части правого предсердия, между местом впадения верхней и нижней полой вены. Слово “синус” в переводе означает “пазуха”, “полость”. Фраза “ритм синусовый” в расшифровке ЭКГ означает, что импульсы генерируются в правильном месте - синусно-предсердном узле. Нормальная частота ритма в покое - от 60 до 80 ударов в минуту. Частота сердечных сокращений (ЧСС) ниже 60 в минуту называется брадикардией, а выше 90 - тахикардия. У тренированных людей обычно наблюдается брадикардия. 2) предсердно-желудочковый узел (атриовентрикулярный, AV; от лат. ventriculus - желудочек) является, можно сказать, “фильтром” для импульсов из предсердий. Он расположен возле самой перегородки между предсердиями и желудочками. В AV-узле самая низкая скорость распространения электрических импульсов во всей проводящей системе сердца. Она равна примерно 10 см/с (для сравнения: в предсердиях и пучке Гиса импульс распространяется со скоростью 1 м/с, по ножкам пучка Гиса и всем нижележащим отделам вплоть до миокарда желудочков - 3-5 м/с). Задержка импульса в AV-узле составляет около 0.08 с, она необходима, чтобы предсердия успели сократиться раньше и перекачать кровь в желудочк 3) Пучок Гиса (= предсердно-желудочковый пучок) не имеет четкой границы с AV-узлом, проходит в межжелудочковой перегродке и имет длину 2 см, после чего делится на левую и правую ножки соответственно к левому и правому желудочку. Поскольку левый желудочек работает интенсивнее и больше по размерам, то левой ножке приходится разделиться на две ветви - переднюю и заднюю.4) Волокна Пуркинье связывают конечные разветвления ножек и ветвей пучка Гиса с сократительным миокардом желудочков. Способностью генерировать электрические импульсы (т.е. автоматизмом) обладает не только синусовый узел. Природа позаботилась о надежном резервировании этой функции. Синусовый узел является водителем ритма первого порядка и генерирует импульсы в частотой 60-80 в минуту.

    Не многие помнят из курса школьной анатомии, что проводящей системой сердца принято называть комплексные анатомические образования в сердечной мышце (узлы, пучки и переплетения волокон).

    Основной особенностью таких сердечных комплексов можно считать их структуру, ведь состоят подобные элементы из нетипичных, а проводящих электрические импульсы мышечных волокон сердца.

    В свою очередь, благодаря этой особенности сердечных комплексов обеспечивается координированная работа различных отделов сердечной мышцы – своевременность возбуждения, сокращения, расслабления предсердий и желудочков. Полноценное же функционирование различных отделов миокарда обеспечивает нормальную сердечную деятельность и, как следствие, жизнедеятельность организма в целом.

    Физиология проводящей сердечной системы такова, что описываемая структура разделяется на два взаимосвязанных отдела:

    • Синоатриальную структура. Или же синусно-предсердная, включает в себя: узел Киса-Фляка, несколько пучков между узловой быстрой проводимости и пр.
    • Атриовентрикулярная структур. Либо же предсердно-желудочковая, которая включает атриовентрикулярный узел, пучок Гиса, волокна проводимости Пуркинье.

    Проводящая система сердца

    Что представляет собой и зачем организму так нужна проводящая система сердца, мы разобрались. Далее хочется рассмотреть подробно, какие функции возложены на проводящую систему сердца и что может происходить с человеком, если в его организме происходит нарушение проводимости в сердечной мышцы?

    Подробнее о функциях этой системы

    Прежде всего, следует заметить, что проводящая система сердца призвана:

    • координировать сокращения и расслабления миокарда, разделяя сократимость предсердий и желудочков;
    • обеспечивать ритмичность сокращений сердца, не допуская, чтобы возникало то или иное нарушение сердечного ритма;
    • способствовать нормальной сердечной деятельности, в том числе, поддержанию синусового ритма;
    • обеспечивать выполнение функции автоматизма миокарда.

    Физиология синусового узла позволяет этой структуре осуществлять работу водителя ритма первого порядка, генерирующего, согласно принятым нормам, от 60 до 90 электрических импульсов за одну минуту.

    Физиология атриовентрикулярного сплетения направлена на организацию значительной задержки волн возбуждения, для обеспечения возбуждения желудочков исключительно после полной сократимости предсердий, что позволяет добиться правильного синусового ритма работы сердца.

    К сожалению, любое нарушение работы описываемых сердечных структур, ведет к расстройствам работы всего органа, к недостаточной проводимости волокон, нарушениям ритма, что рано или поздно может сказываться на функционировании всего организма.

    Нарушение проводимости сердечных проявляется, прежде всего, развитием:

    • синдрома ослабления синусового узла;
    • образованием патологических добавочных проводящих путей между структурами предсердий и желудочков;
    • патологической блокады проводимости, той или иной структуры.

    К сожалению, любое нарушение проводимости сердечной мышцы может негативным образом влиять на весь организм – первично, проявляться нарушениями ритма, а затем, может страдать физиология всех органов.

    Основные ее составляющие

    Мы уже отметили, что проводящая система сердца – это несколько взаимосвязанных структур. Начало рассматриваемой системы – это, несомненно, синусовый узел, располагающийся субэпикардиально, непосредственно, у верхушки правого предсердия. Клетки данной структуры генерируют импульс, а затем, проводят его к предсердиям.

    Следующим в поводящей системе можно назвать атриовентрикулярный узел, располагающийся внизу правого предсердия, несколько замедляющий электрические импульсы возбуждения для организации правильного ритма последовательных сокращений предсердий и желудочков. Далее АВ-структура соединяется с пучком Гиса, разделенным на две ножки.

    В свою очередь, ножки рассматриваемого пучка Гиса, разделяются на отдельные ветви, состоящие из клеточных структур Пуркинье. Далее ветви проводящей системы разветвляются, образуя мельчайшие, пронизывающие всю сердечную мышцу, сплетения.

    Физиология сердечной мышцы сводится к образованию следующего процесса:

    • Первичное возбуждение генерируется в синусовом узле;
    • далее тканями миокарда осуществляется проводимость электрического импульса к предсердиям;
    • в предсердиях возбуждающий импульс распространяется тремя путями – трактом Бахмана, трактом Венкебаха и трактом Тореля;
    • далее возбуждение охватывает все отделы миокарда.

    Проводящая система сердца

    Следует понимать, что данный, кратко описанный процесс характеризуется полным автоматизмом, если же имеет место определенное нарушение проводимости импульсов в рассматриваемой системе – это ведет к последующим расстройствам ритма, иным расстройствам работы сердца, что сказывается на всех органах и системах человека.

    Когда и по каким причинам возникают нарушения?

    К сожалению, определенное нарушение в процессе проводимости сердца, ведущее к расстройствам ритма может возникать у любого человека, любого возраста или социального положения.

    Любые изменения принятой за норму очередности или частотности сокращений сердечной мышцы возникают из-за первичных расстройств таких сердечных функций, как автоматизм, возбудимость, проводимость и/или сократительная способность.

    Нарушение ритма, связанное с расстройствами системы сердечной проводимости могут возникать на фоне:


    Косвенными причинами развития тех или иных расстройств сердечной проводимости, а также последующих нарушений ритмичности сокращений сердца могут быть:

    • ИБС в любых ее проявлениях.
    • Вредные привычки, прежде всего, курение, употребление алкоголя.
    • Пороки сердца, как приобретенного, так и врожденного характера.
    • Эндокринные расстройства, ожирение, сахарный диабет, иные системные заболевания.

    Как предотвратить проблемы?

    Понимая, что серьезные расстройства в проводящей системе сердца, нарушения сердечного ритма, могут нести вполне определенную опасность для здоровья и даже жизни пациентов о профилактике развития таких проблем следует задумываться своевременно.

    При этом профилактика нарушений работы проводящей системы сердца может включать довольно широкий комплекс мероприятий, некоторые из которых осуществляются исключительно под контролем медиков.

    Но, прежде всего, во избежание возникновения описанных проблем пациентам важно:

    5 правил здорового сердца

    Огромную роль в профилактике нарушений сердечного ритма играет адекватная диета. Формируя суточный рацион и желая избежать описанных выше сердечных расстройств, важно отдавать предпочтение питанию богатому калием, кальцием, селеном и магнием.

    Список отдельных продуктов, рекомендуемых к употреблению для профилактики сердечных проблем, включает: овощи, все виды капусты, сухофрукты, фрукты, крупы. Полезны для правильной работы сердца: морская капуста, орехи, морепродукты, нежирное мясо.

    Медикаментозная профилактика нарушений работы проводящей системы сердца заключается в плановом назначении пациентам: антиаритмических средств, адреноблокаторов, статинов, препаратов калия или магния. Также медики могут назначать своим пациентам для предотвращения сердечных проблем препараты ацетилсалициловой кислоты и витаминные комплексы.

    При этом спешим предостеречь наших читателей – принимать любые медикаментозные препараты для профилактики сердечных расстройств без назначения врача категорически ЗАПРЕЩЕНО!

    Любое самолечение может быть опасно для вашего здоровья и даже жизни.

    В заключение хочется заметить, организм человека, в том числе и проводящая сердечная система – сложная саморегулирующаяся система. Чрезвычайно важно не мешать данной системе, своевременно восстанавливаться, после самых различных заболеваний. Если врач не считает нужным назначать вам препараты для профилактики сердечных проблем – однозначно, не стоит покупать и принимать любые медикаменты самостоятельно!

    А чтобы болезнь, действительно, вас не побеспокоила, следует регулярно, скажем, раз в году проходить профилактические осмотры у нескольких узких специалистов, в данном случае, у кардиолога. Берегите свое здоровье, не занимайтесь самолечением и будьте счастливы!

    Вконтакте

    Проводящая система сердца отвечает за правильное взаимодействие между предсердиями и желудочками, что необходимо для нормальной сердечной деятельности. Сбои в её работе способны спровоцировать аритмию, что может стать причиной развития опасных для жизни недугов: по статистике, около 15% сердечных болезней связано с нарушениями ритма сердца.

    Человеческое сердце являет собой мышечный орган с очень сложным строением. К его основным задачам относится обеспечивать беспрерывное движение крови по артериям и венам, а также очищать кровь от углекислоты после того, как она из вен уходит в правое предсердие при расслаблении сердечной мышцы.

    Из правого предсердия жидкая ткань перемещается в правый желудочек, оттуда – в легочный ствол и по одному из его разветвлений направляется к левому или правому легкому. Достигнув по капиллярам легочных пузырьков, кровь очищается от углекислоты и насыщается кислородом. После этого жидкая ткань по легочной вене попадает в левое предсердие, переходит в левый желудочек, затем – в аорту и расходится по организму.

    Насколько слажено будут взаимодействовать между собой камеры сердца (а именно так называют оба желудочка и предсердия), во многом зависит от функции проводящей системы сердца (ПСС). Она представлена в виде сложного образования, состоящего из специальных клеток, что являются своеобразными узлами, по которым передаются сигналы возбуждения, позволяющие сохранить ритмичность и частоту сокращений. Стоит заметить, что хотя проводящая система сердца по физиологии строения отличается от мышечной ткани и нервной системы сердца, она находится в тесной связи с ними.

    Устройство ПСС

    Состоит проводящая система сердца из нескольких узлов. Её начало идет от синусно-предсердного узла (СУ), что являет собой пучок в виде волокон, длина которых составляет от десяти до двадцати, ширина – от трех до пяти миллиметров. Размещается он вверху правого предсердия, возле места впадения двух вен. Физиология строения синусового образования предусматривает два типа клеток: Р-клетки передают возбуждающие сигналы, Т-клетки обеспечивают проводимость волны возбуждения к предсердиям.

    Проводниковые нити, что находятся в СУ, по физиологии строения напоминают мышечные клетки сердца, но они более тонкие, волнистые, немного светлее. Синусовый узел плотно окружен нервными волокнами, от которых зависит ускорение или замедление частоты сокращений сердца.


    Затем идет предсердно-желудочковый (атриовентрикулярный, сокр. АВУ) узел, что являет собой волокна длиной пять, толщиной два миллиметра. Он размещается внизу правого предсердия, возле устья коронарного синуса, с правой стороны от межпредсердной перегородки. Физиология строения тоже состоит из клеток Т и Р типа.

    Следующее образование – пучок Гиса в виде не менее сложного строения, чем предыдущие образования. Состоит он из нескольких частей. Начало образования не контактирует с мышцей миокарда и почти нечувствительно к повреждению сердечных артерий, но быстро втягивается в патологические процессы, которые происходят в окружающей его фиброзной ткани, что состоит из коллагеновых упругих нитей. Затем волокна Гиса расходятся на правую и левую ножки, после чего левая снова делится.

    Поэтому на схеме ножки Гиса представлены в следующем виде:

    • Нити левой ножки идут вниз по двум сторонам межжелудочковой перегородки. Согласно схеме, с её передней ветви проводниковые нити тянутся к левой и боковой частям левого желудочка. С её задней ножки проводниковые нити тянутся в сторону задней стенки левого желудочка и к низу боковой стенки.
    • Нити правой ножки тянутся к мускулатуре правого желудочка.

    Физиология строения ПСС также предусматривает ветви внутри желудочка, что постепенно разветвляются и соединяются с нитями Пуркинье. Дальше они тянутся к миокарду желудочков и пронзают мускулатуру.

    Движение сигнала

    Сердечная мышца сокращается благодаря распространению по ПСС возбуждающих импульсов, что образуются в СУ и уходят по проводящей системе, все узлы которой характеризуются автоматизмом. Задает ритм синусовое образование, в нормальном состоянии генерирующее от шестидесяти до девяноста ударов в течение минуты. Поданные им сигналы распространяются к другим узлам, и подавляют аналогичные импульсы в других образованиях.

    Возникнув, сигнал возбуждения моментально доходит до миокарда предсердий. Затем идет распространение сигнала по трем путям, что соединяют СУ с предсердно-желудочковым:

    • передний путь сигнала лежит по передневерхней стенке правого предсердия, разветвляется на два проводниковых ответвления у межпредсердной перегородки: одна уходит к АВУ, другая – в сторону левого предсердия.
    • средний путь импульса тянется по межпредсердной перегородке к АВУ.
    • задний путь сигнала лежит к АВУ понизу межпредсердной перегородки, от которой уходят проводниковые нити к стенке правого предсердия.

    После достижения предсердно-желудочкового образования, путь сигнала возбуждения расходится: наблюдается распространение проводниковых нитей в разные стороны, по нижним проводниковым волокнам импульс уходит к пучку Гиса. Стоит заметить, что АВУ слегка притормаживает ход волны возбуждения, что позволяет дождаться конца всплеска возбуждения и сокращения предсердий до того, как желудочки среагируют на сигнал.


    Импульс возбуждения, оказавшись в пучке Гиса, быстро распространяется по его разветвлениям. Затем переходит в проводниковые нити Пуркинье, откуда сигнал идет к миокарду желудочков, где сперва затрагивается межжелудочковая перегородка, после чего возбуждение переходит на оба желудочка.

    В желудочках ход волны возбуждения идет от внутреннего слоя оболочки стенки сердца (эндокарда) к его наружной оболочке (эпикарду). При этом образуется электродвижущая сила, которая уходит на поверхность тела человека и её способен зафиксировать электрокардиограф (так называют устройство, позволяющее исследовать электрическую активность миокарда).

    Как возникает аритмия?

    Значение ПСС для сердца чрезвычайно важно: у здорового человека проводящая система сердца обеспечивает частоту ударов от шестидесяти до восьмидесяти раз в минуту. При сбоях в её работе влияние синусового узла уменьшается, что приводит к нарушению хода волны возбуждения, поскольку ритм начинают задавать автоматические центры второго и третьего порядка (АВУ и пучок Гиса). Сперва эту функцию берет на себя предсердно-желудочковый узел, который способен производить от сорока до шестидесяти сигналов в минуту.

    Если и с центром вторичного порядка сбои, и его значение в ходе ритма снижается, частоту ударов начинает регулировать пучок Гиса, который может генерировать от пятнадцати до сорока ударов в минуту. Стоит заметить, что волокна Перье тоже имеют функцию автоматизма и вырабатывают от пятнадцати до тридцати толчков за секунду.


    При нарушении хода сигнала по проводящей системе сердца наблюдаются нарушения сердечного ритма, известные под названием аритмия. Этот недуг характеризуется тем, что сердце может биться слишком быстро или медленно, между ударами возможны разные интервалы, иногда сердце на некоторое время останавливается и вновь начинает биться.

    Ход возбуждающего сигнала может быть нарушен из-за «блокады», когда нарушается проведение сигнала от предсердия к желудочку или внутри желудочка. Такие недуги обычно протекают бессимптомно и часто являются признаками других сердечных патологий.

    Функциональные изменения в здоровом сердце, когда происходит нарушение хода возбуждающего сигнала по проводящей системе, вызывают стрессы, алкоголь, переедание, запоры, прием лекарств, продуктов, что содержат кофеин. У женщин ход импульса может быть нарушен перед месячными.

    Повлиять на нарушение хода сигнала могут и болезни, среди которых:

    • патологии сердца — ишемия, сердечная недостаточность, миокардит, пролапс митрального клапана, порок сердца;
    • проблемы со щитовидной железой;
    • сахарный диабет, особенно в сочетании с гипертензией и ожирением;
    • наследственность;
    • сколиоз.

    Если сбои в работе сердца повторяются, обязательно надо обратиться к врачу для диагностики. Лечение будет зависеть от спровоцировавшей нарушения хода сигнала причины: после излечения основного заболевания сердечный ритм нормализуется.

    Если аритмия не является симптомом, а носит самостоятельный характер, в качестве её лечения назначают противоаритмические лекарства. При блокаде отдельных проводниковых ветвей обычно лечения не требуется, иногда врач может назначить специальные препараты.

    В некоторых ситуациях при аритмии или блокаде врач может принять решение о хирургической операции, цель которой – вживление кардиостимулятора, регулирующий ритм сердца. После этого больному необходимо будет пройти реабилитацию и строго выполнять все указания врача: постоянно следить за пульсом, давлением, питанием, избегать контактов с сильными электромагнитными источниками, держать от устройства подальше различные электрические приборы.

    После операции пациент обязательно должен находиться под наблюдением врача. Сначала надо будет прийти на обследование через один месяц после установки устройства, затем – через три. После этого при отсутствии жалоб больной может проходить наблюдение один или два раза в год.

    Сердце - удивительный орган, обладающий клетками проводящей системы и сократительного миокарда, которые "заставляют" сердце ритмично сокращаться, выполняя функцию кровяного насоса.

    1. синусно-предсердный узел (синусовый узел);
    2. левое предсердие;
    3. предсердно-желудочковый узел (атриовентрикулярный узел);
    4. предсердно-желудочковый пучок (пучок Гиса);
    5. правая и левая ножки пучка Гиса;
    6. левый желудочек;
    7. проводящие мышечные волокна Пуркинье;
    8. межжелудочковая перегородка;
    9. правый желудочек;
    10. правый предсердно-желудочковый клапан;
    11. нижняя полая вена;
    12. правое предсердие;
    13. отверстие венечного синуса;
    14. верхняя полая вена.

    Рис.1 Схема строения проводящей системы сердца

    Из чего состоит проводящая система сердца?

    Сокращения сердечной мышцы (миокарда) происходят благодаря импульсам, возникающим в синусовом узле и распространяющимся по проводящей системе сердца: через предсердия, атриовентрикулярный узел, пучок Гиса, волокна Пуркинье - импульсы проводятся к сократительному миокарду.

    Рассмотрим этот процесс подробно:

    1. Возбуждающий импульс возникает в синусовом узле. Возбуждение синусового узла не отражается на ЭКГ.
    2. Через несколько сотых долей секунды импульс из синусового узла достигает миокарда предсердий.
    3. По предсердиям возбуждение распространяется по трем путям, соединяющим синусовый узел (СУ) с атриовентрикулярным узлом (АВУ):
      • Передний путь (тракт Бахмана) - идет по передневерхней стенке правого предсердия и разделяется на две ветви у межпредсердной перегородки - одна из которых подходит к АВУ, а другая - к левому предсердию, в результате чего, к левому предсердию импульс приходит с задержкой в 0,2 с;
      • Средний путь (тракт Венкебаха) - идет по межпредсердной перегородке к АВУ;
      • Задний путь (тракт Тореля) - идет к АВУ по нижней части межпредсердной перегородки и от него ответвляются волокна к стенке правого предсердия.
    4. Возбуждение, передающееся от импульса, охватывает сразу весь миокард предсердий со скоростью 1 м/с.
    5. Пройдя предсердия, импульс достигает АВУ, от которого проводящие волокна распространяются во все стороны, а нижняя часть узла переходит в пучок Гиса.
    6. АВУ выполняет роль фильтра, задерживая прохождение импульса, что создает возможность для окончания возбуждения и сокращения предсердий до того, как начнется возбуждение желудочков. Импульс возбуждения распространяется по АВУ со скоростью 0,05-0,2 м/с; время прохождения импульса по АВУ длится порядка 0,08 с.
    7. Между АВУ и пучком Гиса нет четкой границы. Скорость проведения импульсов в пучке Гиса составляет 1 м/с.
    8. Далее возбуждение распространяется в ветвях и ножках пучка Гиса со скоростью 3-4 м/с. Ножки пучка Гиса, их разветвления и конечная часть пучка Гиса обладают функцией автоматизма, который составляет 15-40 импульсов в минуту.
    9. Разветвления ножек пучка Гиса переходят в волокна Пуркинье, по которым возбуждение распространяется к миокарду желудочков сердца со скоростью 4-5 м/с. Волокна Пуркинье также обладают функцией автоматизма - 15-30 импульсов в минуту.
    10. В миокарде желудочков волна возбуждения сначала охватывает межжелудочковую перегородку, после чего распространяется на оба желудочка сердца.
    11. В желудочках процесс возбуждения идет от эндокарда к эпикарду. При этом во время возбуждения миокарда создается ЭДС, которая распространяется на поверхность человеческого тела и является сигналом, который регистрируется электрокардиографом.

    Таким образом, в сердце имеется множество клеток, обладающих функцией автоматизма:

    1. синусовый узел (автоматический центр первого порядка) - обладает наибольшим автоматизмом;
    2. атриовентрикулярный узел (автоматический центр второго порядка);
    3. пучок Гиса и его ножки (автоматический центр третьего порядка).

    В норме существует только один водитель ритма - это синусовый узел, импульсы от которого распространяются к нижележащим источникам автоматизма до того, как в них закончится подготовка очередного импульса возбуждения, и разрушают этот процесс подготовки. Говоря проще, синусовый узел в норме является основным источником возбуждения, подавляя аналогичные сигналы в автоматических центрах второго и третьего порядка.

    Автоматические центры второго и третьего порядка проявляют свою функцию только в патологических условиях, когда автоматизм синусового узла снижается, или же повышается их автоматизм.

    Автоматический центр третьего порядка становится водителем ритма при снижении функций автоматических центров первого и второго порядков, а также при увеличении собственной автоматической функции.

    Проводящая система сердца способна проводить импульсы не только в прямом направлении - от предсердий к желудочкам (антеградно), но и в обратном направлении - от желудочков к предсердиям (ретроградно).

    Пройти онлайн тест (экзамен) по данной теме...

    ВНИМАНИЕ! Информация, представленная сайте сайт носит справочный характер. Администрация сайта не несет ответственности за возможные негативные последствия в случае приема каких-либо лекарств или процедур без назначения врача!

    30954 0

    Миокард предсердий и желудочков , разделенный фиброзными кольцами, синхронизируется в своей работе проводящей системой сердца, единой для всех его отделов (рис. 1.30).

    Рис. 1.30. Схематическое изображение проводящей системы сердца: 1 — верхняя полая вена; 2 — синусно-предсердный узел; 3 — передний межузловой и межпредсердный тракт Бахмана; 4 — средний межузловой тракт Венкебаха; 5 — задний межузловой тракт Горела; 6 — предсердно-желудочковый узел; 7 — предсердно-желудочковый пучок; 8 — левая ножка предсердно-желудочкового пучка; 9 — правая ножка пучка Гиса; 10 — субэндокардиальная сеть волокон Пуркинье; 11 — нижняя полая вена; 12 — венечный синус; 13 — передняя ветвь левой ножки пучка Гиса; 14 — аорта; 15 — задний легочный ствол.

    Структуры, генерирующие и передающие импульсы к предсердным и вентрикулярным кардиомиоцитам, регулирующие и координирующие сократительную функцию сердца, специализированы и сложны. Проводящая система сердца по своей гистоструктуре и цитологическим характеристикам существенно отличается от других отделов сердца. Анатомически проводящая система включает синусно-предсердный и предсердно-желудочковый узлы, межузловые и межпредсердные проводящие пути, предсердно-желудочковый пучок (пучок Гиса) специализированных мышечных клеток, отдающий левую и правую ножки, субэндокардиальную сеть волокон Пуркинье.

    Синусно-предсердный узел

    Синусно-предсердный узел расположен с латерильной стороны над основанием правого ушка у места впадения верхней полой вены в правое предсердие, от эндокарда которого его отделяет тонкая прослойка соединительной и мышечной ткани. Имеет форму уплощенного эллипса или полумесяца, горизонтально расположенного под эпикардом правого предсердия. Длина узла 10-15 мм, высота — до 5 мм, толщина — около 1,5 мм. Визуально узел слабо отличим от окружающего его миокарда, несмотря на капсулоподобное скопление соединительной ткани по периферии.

    Ткань синусно-предсердного узла почти на 30% состоит из переплетающихся в различных направлениях пучков коллагеновых фибрилл различной толщины с небольшим количеством эластических волокон и клеток соединительной ткани. Тонкие мышечные волокна из специализированных клеток диаметром 3-4,5 мк расположены беспорядочно с неравномерными промежутками, выполненными интерстицием, микрососудами, нервными элементами, ориентированы по окружности сосуда, лишь вблизи центральной артерии, питающей узел. По периферии узел окружен значительным количеством фиброэластической ткани с обширной сетью капилляров, здесь же расположены нервные ганглии, единичные ганглиозные клетки и нервные волокна, в большом количестве проникающие в ткань узла.

    Синусно-предсердный узел дает начало множественным путям, которые проводят импульсы, генерируемые специализироваными клетками. От него отходят латеральные пучки к правому ушку, нередко — горизонтальный пучок к левому ушку, задний горизонтальный пучок к левому предсердию и устьям легочных вен, пучки к верхней и нижней полым венам, медиальные пучки к межвенозному мышечному пучку миокарда. Данные мышечные пучки проводящей системы являются факультативными анатомическими образованиями, отсутствие того или иного из них может не оказывать заметного влияния на работу сердечной мышцы.

    Межузловые пути проведения импульсов

    Наиболее функционально значимыми являются нисходящие пути. Передний межузловой тракт, пучок Бахмана, берет начало от переднего края синусно-предсердного узла, проходит спереди и влево от верхней полой вены по направлению к левому предсердию, продолжаясь до уровня левого ушка. От пучка Бахмана ответвляется передний межузловой пучок, далее самостоятельно следующий в межпредсердной перегородке до предсердно-желудочкового узла. Средний меж узловой тракт, пучок Венкебаха, отходит от верхнего и заднего краев синусно- предсердного узла. Проходит единым пучком позади верхней полой вены, разделяясь затем на две неравные части, меньшая из которых следует до левого предсердия, а основная продолжается по межпредсердной перегородке до предсердно-желудочкового узла. Задний межузловой тракт, пучок Тореля, выходит из заднего края синусно-предсердного узла. Он рассматривается как основной путь межузлового проведения импульсов, его волокна следуют по пограничному гребешку, образуют основную долю волокон евстахиева гребня, следуя далее до предсердно-желудочкового узла по межпредсердной перегородке. Часть волокон перегородочной части всех трех трактов переплетается в непосредственной близости от предсердно-желудочкового узла, проникая в него на разных уровнях. Отдельные волокна межпредсердных и межузловых трактов по структуре сходны с волокнами Пуркинье желудочков, другие состоят из обычных предсердных кардиомиоцитов.

    Предсердно-желудочковый узел

    Предсердно-желудочковый узел обычно локализован под эндокардом правого предсердия на правом фиброзном треугольнике в нижней части межпредсердечной перегородки, над прикреплением септальной створки правого AV-клапана и несколько спереди от устья венечного синуса. Чаще всего овоидной, веретенообразной, дисковидной или треугольной формы, его размеры колеблятся в пределах от 6х4х05 до 11х6х1 мм.

    В структуре предсердно-желудочкового узла, как и в рабочем миокарде, мышечный компонентпреобладает над соединительной тканью. В отличие от синусно-предсердного узла, он является мышечным образованием с менее развитым соединительнотканным остовом. Ткань узла как бы разграничена на две части крово снабжающей его артерией и пластинкой соединительной ткани, соединяющей стенку этого сосуда и фиброзное кольцо. От остальной ткани правого предсердия узел отделяет прослойка жировой клетчатки. Между предсердно-желудочковым узлом и устьем венечного синуса компактно размещены многочисленные парасимпатические ганглии. У мышечных волокон толщиной до 5 мкм продольное, косое и поперечное направление. Тесно переплетаясь, они образуют лабиринты, влияющие на электрофизиологические свойства ткани.

    Пучок Гиса

    От предсердно-желудочкового узла отходят верхний, задний и предсердно-желудочковый пучки Гиса, причем только последний выявляют в 100% наблюдений. Границей между пучком Гиса, отходящим от передней части предсердно-желудочкового узла, является его суженный участок, перфорирующий правый фиброзный треугольник в месте соединения с верхней перепончатой частью межжелудочковой перегородки. Длина пучка колеблется в пределах 8-20 мм при ширине 2-3 мм, толщине 1,5-2 мм и коррелирует с формой сердца.

    По длиннику пучок Гиса слагается из двух частей: короткой интрафиброзной, проходящей сквозь ткань правого фиброзного треугольника, и более протяженной перегородочной, залегающей в межжелудочковой перегородке в виде серовато-бледного тяжа, который с возрастом приобретает желтоватый оттенок из-за накопления жировой ткани. На поперечных разрезах составляющие его мышечные волокна разделены соединительнотканными прослойками на группы, консолидированы в виде неправильного треугольника или фигуры овоидной формы. Предсердно-желудочковый пучок Гиса по всему периметру окружен плотной фиброзной тканью, размер его клеток возрастает по мере удаления от узла.

    Под перепончатой частью, на уровне правого синуса аорты, пучок Гиса раздваивается на две ножки, как бы "седлая" гребень мышечного участка межжелудочковой перегородки. Более мощная правая ножка, сохраняющая вид пучка, проходит по правожелудочковой стороне межжелудочковой перегородки, отдавая ветви всем стенкам ПЖ. В большинстве случаев ее удается проследить до основания передней сосочковой мышцы, и лишь в отдельных наблюдениях она теряется уже на уровне середины межжелудочковой перегородки.

    Топографически правая ножка пучка Гиса подразделяется на верхнюю, составляющую треть длины до основания перегородочных сосочковых мышц, среднюю — до перегородочно-краевой трабекулы, и нижнюю, расположенную в ней и в основании передней сосочковой мышцы. Верхняя часть этой ножки проходит субэндокардиально, следующая — интрамурально, а нижняя вновь возвращается под эндокард. Нижний участок ножки дает начало дистальным ветвям: передним, идущим к передней стенке желудочка, задним — к трабекулам задней стенки желудочка, и латеральным, следующим к правому краю сердца.

    Левая ножка предсердно-желудочкового пучка появляется под эндокардом левой стороны межжелудочковой перегородки из-под задненижнего края перепончатой части перегородки между желудочками на уровне синусов аорты. В левой ножке различают стволовую и разветвленную части. Стволовая разделяется на переднюю ветвь, идущую к передней стенке ЛЖ и расположенной на ней сосочковой мышце, задняя — к его задней стенке и сосочковой мышце. При делении ножки на большее количество ветвей дополнительные ответвления следуют к верхушке сердца.

    На периферии вторичные ветви левой ножки рассыпаются на более мелкие пучки, которые входят в трабекулы и образуют сетевидные связи между собой. Пучковые строения менее компактной левой ножки и обеих ее ветвей, направляющихся к передней и задней сосочковым мышцам, как и их граница с тканью рабочего миокарда, выражены значительно слабее, чем правой. Соединительнотканный и сосудистый компонент в них представлены хуже, чем в других участках проводящей системы. Клетки проводящей системы образуют под эндокардом сильно ветвящуюся сеть, элементы которой разграничиваются соединительнотканными прослойками, включающими сосудистые и нервные структуры.

    Структура клеточных элементов

    Строение клеток проводящей системы сердца определяется их функциональной специализацией. В ее неоднородном клеточном составе по морфофункциональным признакам выделяюттри типа специализированных кардиомиоцитов. Клетки I типа — П-клетки, типичные нодальные или ведущие пейсмейкерные — неправильной удлиненной формы. Эти небольшие миоциты диаметром 5-10 нм, со светлой саркоплазмой и довольно крупным центрально расположенным ядром отдают многочисленные цитоплазматические отростки, сужающиеся к концам и плотно переплетающиеся между собой. П-клетки образуют небольшие группы — кластеры, разграниченные элементами рыхлой соединительной ткани. Кластеры П-клеток окружены общей базальной мембраной толщиной 100 нм, глубоко проникающей в межклеточные щели. Их сарколемма образует многочисленные кавеолы, а вместо Т-системы — нерегулярно определяющиеся глубокие туннельные инвагинации диаметром 1-2 мкм, в которые проникает интерстиций и иногда — нервные элементы.

    Контрактильный аппарат П-клеток представлен редкими, хаотично перекрещивающимися миофибриллами либо произвольно ориентированными свободно лежащими тонкими и толстыми протофибриллами и их пучками, нередко в комплексе с полирибосомами. Тонкие миофибриллы состоят из рыхло упакованных филаментов с небольшим количеством саркомеров, диски которых выражены нечетко, Z-линии неодинаковой толщины, иногда прерывисты, а электронно-оптически плотное вещество часто выходит за пределы миофибрилл. Объем, занимаемый миофибриллами в П-клетках, составляет не более 25% такового в вентрикулярных кардиомиоцитах. Редкие митохондрии неодинакового размера и формы с внутренней структурой, значительно упрощенной в сравнении с клетками рабочего миокарда, беспорядочно разбросаны в обильной светлой саркоплазме, окружающей относительно крупное ядро, которое расположено в центральной зоне. Гранулы гликогена немногочисленны.

    Слабо развитый саркоплазматический ретикулум распределен преимущественно по периферии клетки, причем его терминальные цистерны иногда формируют типичные функциональные контакты с плазмолеммой. В цитоплазме содержатся свободные гранулы рибонуклеопротеидов, элементы гранулярного ретикулума, комплекса Гольджи, лизосомы. Стабильность формы этих довольно бедных органеллами клеток поддерживают многочисленные хаотично расположенные элементы цитоскелета — так называемые промежуточные филаменты диаметром около 10 нм, часто оканчивающиеся в плотном веществе десмосом.

    Клетки II типа — переходные или латентные пейсмейкеры — неправильной удлиненной отростчатой формы. Они короче, но толще рабочих кардиомиоцитов предсердий, нередко содержат два ядра. Сарколемма переходных клеток часто образует глубокие инвагинации диаметром 0,12-0,16 мкм, выстланные гликокаликсом, как и в Т-тубулах. Эти клетки богаты органеллами и имеют меньше недифференцированной саркоплазмы, чем П- клетки, их миофибриллы ориентированы вдоль длинной оси, толще и состоят из большего количества саркомеров, в которых слабо выражены Н- и М-полоски. Митохондрии, расположенные между миофибриллами, по своей внутренней организации приближаются к таковым клеток рабочего миокарда, количество гликогена непостоянно.

    Клетки III типа подобны клеткам Пуркинье — проводящие миоциты, на поперечных срезах выглядят объемнее других кардиомиоцитов. Их длина составляет 20-40 мкм, диаметр — 20- 50 мкм, образуемые ими волокна имеют большее поперечное сечение, чем в рабочем миокарде, но неодинаковую толщину.

    Клетки Пуркинье отличают также обширная свободная от миофибрилл перинуклеарная зона, выполненная светлой вакуолизированной саркоплазмой, крупное округлое либо напоминающее прямоугольник ядро с умеренной концентрацией хроматина. Их контрактильный аппарат развит слабее, а система пластического обеспечения — лучше, чем в вентрикулярных кардиомиоцитах. Сарколемма образует многочисленные кавеолы, единичные, нерегулярно расположенные Т-тубулы и глубокие, достигающие аксиальной зоны клетки-туннели диаметром до 1 мкм, выстланные базальной мембраной.

    Миофибриллы , расположенные в субсарколеммной зоне, иногда ветвятся и анастомозируют. Несмотря на нечеткую ориентировку по длиннику клетки, они, как правило, закреплены в обоих вставочных дисках. Упаковка миофиламентов в миофибриллах довольно рыхлая, гексагональное расположение толстых и тонких протофибрилл не всегда выдерживается, в саркомерах слабо выражены Н- полоска и мезофрагма, отмечается полиморфизм в структуре Z-линий.

    В саркоплазме видны свободно взвешенные разрозненные и собранные в комплексы толстые и тонкие филаменты цитоскелета, связанные с полисомами, микротрубочки, лептофибриллы с периодом 140-170 нм, рибосомы и гранулыгликогена, нередко заполняющие всю свободную саркоплазму. Немногочисленные элементы саркоплазматического ретикулума располагаются вокруг миофибрилл и под сарколеммой, иногда образуют субсарколеммные цистерны. Митохондрии заметно меньше, чем в рабочих кардиомиоцитах, расположены как вдоль миофибрилл, так и перинуклеарно в виде небольших скоплений. Здесь же отмечаются профили гранулярного ретикулума, пластинчатого комплекса, лизосомы, окаймленные везикулы.

    В целом, П-клетки проводящей системы, генерирующие импульсы, отличаются наиболее низким уровнем морфологической дифференцировки, который постепенно повышается по мере приближения к рабочим кардиомиоцитам желудочков, достигая здесь максимального значения. Объединение различных типов клеток в единую систему генерации и проведения импульса определяется необходимостью синхронизации этого процесса во всех отделах сердца.

    Миоциты проводящей системы сердца имеют не только цитоморфологические, но иммуно- и гистохимические отличия от клеток рабочего миокарда. Все миоциты проводящей системы, за исключением П-клеток предсердно-синусного узла, богаче гликогеном, который присутствует в них не только в легко метаболизируемой β-форме, но и в виде более устойчивого комплекса с белками — десмогликогена, выполняющего пластические функции. Активность гликолитических ферментов и гликогенсинтетазы в проводящих кардиомиоцитах относительно выше, чем энзимов цикла Кребса и дыхательной цепи, тогда как в рабочих кардиомиоцитах это соотношение имеет обратный характер соответственно содержанию митохондрий. В результате миоциты предсердно-желудочкового узла, пучка Гиса и других отделов проводящей системы устойчивее к гипоксии, чем остальной миокард, несмотря на более высокую активность АТФазы. В ткани проводящей системы отмечается интенсивная реакция на холин эстеразу, отсутствующая в миокарде желудочков, и значительно большая активность лизосо мальных гидролаз.

    Распределение миоцитов различных типов, характер и строение контактов клеток в различных отделах проводящей системы определяется их функциональной специализацией. В срединной зоне синусно-предсердного узла расположены наиболее рано активирующиеся П-клетки — пейсмейкеры, генерирующие импульс. Его периферию занимают переходные клетки II типа, П-клетки контактируют только с ними. Переходные клетки опосредуют прохождение импульса к миоцитам предсердий, замедляют его распространение. Контакты П-клеток немногочисленны, имеют упрощенное строение и весьма произвольную локализацию. В большинстве случаев представлены простым сближением плазмолеммы смежных клеток, фиксируемым единичными десмосомами. Цитологический состав предсердно-желудочкового узла более разнообразен. В нем присутствуют клетки, по структуре очень близкие к пейсмейкерным, краниодорсальную часть занимают миоциты II типа, а дистальные отделы состоят из быстрее проводящих импульс Пуркинье-подобных проводящих миоцитов III типа.

    Некоторые исследователи выделяют в составе узла три зоны, отличающиеся по морфологическим и электрофизиологическим характеристикам: АN, переходную от предсердного миокарда к узловой ткани, состоящую в основном из переходных клеток, и NН-зону, пограничную с пучком Гиса, преимущественно формируемую полиморфными переходными Пуркинье-подобными клетками.

    Контакты переходных миоцитов с типичными нодальными П-клетками имеют более простое строение, чем их соединения между собой, с предсердными рабочими миоцитами или клетками III типа. Межклеточные стыки образуют лишь непротяженные и бедные осмиофильным материалом промежуточные зоны, а десмосомы и миниатюрные нексусы отмечают довольно редко.

    Межклеточные контакты миоцитов III типа между собой и с окружающими сократительными кардиомиоцитами организованы сложнее и по своей структуре ближе к характерным для рабочего миокарда. Вследствие более упорядоченного расположения миофибрилл они ориентированы поперек длинной оси клеток и замет- но реже образуются боковыми поверхностями их апикальных зон. Поперечно расположенные вставочные диски отличает большая протяженность хорошо выраженных промежуточных зон. Наличие протяженных нексусов при боковых контактах значительно повышает проводимость этих мышечных волокон и облегчает передачу импульсов на рабочий миокард. Вставочные диски между клетками Пуркинье иногда имеют косое расположение или V-образную форму. Подобная ориентация и слабая извитость промежуточных зон соответствуют более примитивному строению их вставочных дисков по сравнению с рабочими клетками.

    В.В. Братусь, А.С. Гавриш "Структура и функции сердечено-сосудистой системы"