Влияние на человека электромагнитного излучения. Источники, свойства электромагнитных излучений

Влияние на человека электромагнитного излучения. Источники, свойства электромагнитных излучений
Влияние на человека электромагнитного излучения. Источники, свойства электромагнитных излучений

Содержание статьи

ЭЛЕКТРОМАГНИТНОЕ ИЗЛУЧЕНИЕ, электромагнитные волны, возбуждаемые различными излучающими объектами, – заряженными частицами, атомами, молекулами, антеннами и пр. В зависимости от длины волны различают гамма-излучение, рентгеновское, ультрафиолетовое излучение, видимый свет, инфракрасное излучение, радиоволны и низкочастотные электромагнитные колебания.

Может показаться удивительным, что внешне столь разные физические явления имеют общую основу. В самом деле, что общего между кусочком радиоактивного вещества, рентгеновской трубкой, ртутной газоразрядной лампой, лампочкой фонарика, теплой печкой, радиовещательной станцией и генератором переменного тока, подключенным к линии электропередачи? Как, впрочем, и между фотопленкой, глазом, термопарой, телевизионной антенной и радиоприемником. Тем не менее, первый список состоит из источников, а второй – из приемников электромагнитного излучения. Воздействия разных видов излучения на организм человека тоже различны: гамма- и рентгеновское излучения пронизывают его, вызывая повреждение тканей, видимый свет вызывает зрительное ощущение в глазу, инфракрасное излучение, падая на тело человека, нагревает его, а радиоволны и электромагнитные колебания низких частот человеческим организмом и вовсе не ощущаются. Несмотря на эти явные различия, все названные виды излучений – в сущности разные стороны одного явления.

Взаимодействие между источником и приемником формально состоит в том, что при всяком изменении в источнике, например при его включении, наблюдается некое изменение в приемнике. Это изменение происходит не сразу, а спустя некоторое время, и количественно согласуется с представлением о том, что нечто перемещается от источника к приемнику с очень большой скоростью. Сложная математическая теория и огромное число разнообразных экспериментальных данных показывают, что электромагнитное взаимодействие между источником и приемником, разделенными вакуумом или разреженным газом, может быть представлено в виде волн, распространяющихся от источника к приемнику со скоростью света с .

Скорость распространения в свободном пространстве одинакова для всех типов электромагнитных волн от гамма-лучей до волн низкочастотного диапазона. Но число колебаний в единицу времени (т.е. частота f ) меняется в очень широких пределах: от нескольких колебаний в секунду для электромагнитных волн низкочастотного диапазона до 10 20 колебаний в секунду в случае рентгеновского и гамма-излучений. Поскольку длина волны (т.е. расстояние между соседними горбами волны; рис. 1) дается выражением l = с /f , она тоже изменяется в широких пределах – от нескольких тысяч километров для низкочастотных колебаний до 10 –14 м для рентгеновского и гамма-излучений. Именно поэтому взаимодействие электромагнитных волн с веществом столь различно в разных частях их спектра. И все же все эти волны родственны между собой, как родственны водяная рябь, волны на поверхности пруда и штормовые океанские волны, тоже по-разному воздействующие на объекты, встречающиеся на их пути. Электромагнитные волны существенно отличаются от волн на воде и от звука тем, что их можно передать от источника к приемнику через вакуум или межзвездное пространство. Например, рентгеновские лучи, возникающие в вакуумной трубке, воздействуют на фотопленку, расположенную вдали от нее, тогда как звук колокольчика, находящегося под колпаком, услышать невозможно, если откачать воздух из-под колпака. Глаз воспринимает идущие от Солнца лучи видимого света, а расположенная на Земле антенна – радиосигналы удаленного на миллионы километров космического аппарата. Таким образом, никакой материальной среды, вроде воды или воздуха, для распространения электромагнитных волн не требуется.

Источники электромагнитного излучения.

Несмотря на физические различия, во всех источниках электромагнитного излучения, будь то радиоактивное вещество, лампа накаливания или телевизионный передатчик, это излучение возбуждается движущимися с ускорением электрическими зарядами. Различают два основных типа источников. В «микроскопических» источниках заряженные частицы скачками переходят с одного энергетического уровня на другой внутри атомов или молекул. Излучатели такого типа испускают гамма-, рентгеновское, ультрафиолетовое, видимое и инфракрасное, а в некоторых случаях и еще более длинноволновое излучение (примером последнего может служить линия в спектре водорода, соответствующая длине волны 21 см, играющая важную роль в радиоастрономии). Источники второго типа можно назвать макроскопическими. В них свободные электроны проводников совершают синхронные периодические колебания. Электрическая система может иметь самые разнообразные конфигурации и размеры. Системы такого типа генерируют излучение в диапазоне от миллиметровых до самых длинных волн (в линиях электропередачи).

Гамма-лучи испускаются самопроизвольно при распаде ядер атомов радиоактивных веществ, например радия. При этом происходят сложные процессы изменения структуры ядра, связанные с движением зарядов. Генерируемая частота f определяется разностью энергий E 1 и E 2 двух состояний ядра: f = (E 1 – E 2)/h , где h – постоянная Планка.

Рентгеновское излучение возникает при бомбардировке в вакууме поверхности металлического анода (антикатода) электронами, обладающими большими скоростями. Быстро замедляясь в материале анода, эти электроны испускают так называемое тормозное излучение, имеющее непрерывный спектр, а происходящая в результате электронной бомбардировки перестройка внутренней структуры атомов анода, в результате которой атомные электроны переходят в состояние с меньшей энергией, сопровождается испусканием так называемого характеристического излучения, частоты которого определяются материалом анода.

Такие же электронные переходы в атоме дают ультрафиолетовое и видимое световое излучение. Что же касается инфракрасного излучения, то оно обычно является результатом изменений, мало затрагивающих электронную структуру и связанных преимущественно с изменениями амплитуды колебаний и вращательного момента импульса молекулы.

В генераторах электрических колебаний имеется «колебательный контур» того или иного типа, в котором электроны совершают вынужденные колебания с частотой, зависящей от его конструкции и размеров. Наиболее высокие частоты, соответствующие миллиметровым и сантиметровым волнам, генерируются клистронами и магнетронами – электровакуумными приборами с металлическими объемными резонаторами, колебания в которых возбуждаются токами электронов. В генераторах более низких частот колебательный контур состоит из катушки индуктивности (индуктивность L ) и конденсатора (емкость C ) и возбуждается ламповой или транзисторной схемой. Собственная частота такого контура, которая при малом затухании близка к резонансной, дается выражением .

Переменные поля очень низких частот, используемые для передачи электрической энергии, создаются электромашинными генераторами тока, в которых роторы, несущие проволочные обмотки, вращаются между полюсами магнитов.

Теория Максвелла, эфир и электромагнитное взаимодействие.

Когда океанский лайнер в тихую погоду проходит на некотором расстоянии от рыбацкой лодки, то спустя какое-то время лодка начинает сильно раскачиваться на волнах. Причина этого всем понятна: от носа лайнера по поверхности воды бежит волна в виде последовательности горбов и впадин, которая и достигает рыбацкой лодки.

Когда при помощи специального генератора в установленной на искусственном спутнике Земли и направленной на Землю антенне возбуждаются колебания электрического заряда, в приемной антенне на Земле (также через некоторое время) возбуждается электрический ток. Как же передается взаимодействие от источника к приемнику, если между ними отсутствует материальная среда? И если сигнал, поступающий на приемник, можно представить в виде некоторой падающей волны, то что это за волна, которая способна распространяться в вакууме, и как могут возникать горбы и впадины там, где ничего нет?

Над этими вопросами в применении к видимому свету, распространяющемуся от Солнца к глазу наблюдателя, ученые задумывались уже давно. На протяжении большей части 19 в. такие физики, как О.Френель , И.Фраунгофер , Ф.Нейман, пытались найти ответ в том, что пространство на самом деле не пусто, а заполнено некой средой («светоносным эфиром»), наделенной свойствами упругого твердого тела. Хотя такая гипотеза и помогла объяснить некоторые явления в вакууме, она привела к непреодолимым трудностям в задаче о прохождении света через границу двух сред, например воздуха и стекла. Это побудило ирландского физика Дж.Мак-Куллага отбросить идею упругого эфира. В 1839 он предложил новую теорию, в которой постулировалось существование среды, по своим свойствам отличной от всех известных материалов. Такая среда не оказывает сопротивления сжатию и сдвигу, но сопротивляется вращению. Из-за этих странных свойств модель эфира Мак-Куллага вначале на вызвала особого интереса. Однако в 1847 Кельвин продемонстрировал наличие аналогии между электрическими явлениями и механической упругостью. Исходя из этого, а также из представлений М.Фарадея о силовых линиях электрического и магнитного полей, Дж.Максвелл предложил теорию электрических явлений, которая, по его словам, «отрицает действие на расстоянии и приписывает электрическое действие напряжениям и давлениям в некой всепроникающей среде, причем эти напряжения такие же, с какими имеют дело инженеры, а среда и есть именно та среда, в которой, как предполагают, распространяется свет». В 1864 Максвелл сформулировал систему уравнений, охватывающую все электромагнитные явления. Примечательно, что его теория во многом напоминала теорию, предложенную за четверть века до этого Мак-Куллагом. Уравнения Максвелла были столь всеохватывающими, что из них выводились законы Кулона , Ампера , электромагнитной индукции и следовал вывод о совпадении скорости распространения электромагнитных явлений со скоростью света.

После того как уравнениям Максвелла была придана более простая форма (заслуга в основном О.Хевисайда и Г.Герца), полевые уравнения стали ядром электромагнитной теории. Хотя эти уравнения сами по себе и не требовали максвелловской интерпретации на основе представлений о напряжениях и давлениях в эфире, такая интерпретация повсеместно была принята. Несомненный успех уравнений в предсказании и объяснении различных электромагнитных явлений был воспринят как подтверждение справедливости не только уравнений, но и механистической модели, на основе которой они были выведены и истолкованы, хотя эта модель была совершенно не существенна для математической теории. Фарадеевские силовые линии поля и трубки тока наряду с деформациями и смещениями стали существенными атрибутами эфира. Энергия рассматривалась как запасенная в напряженной среде, а ее поток Г.Пойнтинг в 1884 представил вектором, носящим теперь его имя. В 1887 Герц экспериментально продемонстрировал существование электромагнитных волн. В серии блестящих экспериментов он измерил скорость их распространения, а также показал, что они могут отражаться, преломляться и поляризоваться. В 1896 Г.Маркони получил патент на радиосвязь.

В континентальной Европе независимо от Максвелла развивалась теория дальнодействия – совершенно другой подход к проблеме электромагнитного взаимодействия. Максвелл писал по этому поводу: «Согласно теории электричества, которая делает большие успехи в Германии, две заряженные частицы непосредственно действуют друг на друга на расстоянии с силой, которая, по Веберу, зависит от их относительной скорости и действует, согласно теории, основанной на идеях Гаусса и развитой Риманом, Лоренцом и Нейманом, не мгновенно, а спустя некоторое время, зависящее от расстояния. По достоинству оценить мощь этой теории, которая столь выдающимся людям объясняет любой вид электрических явлений, можно, лишь изучив ее». Теорию, о которой говорил Максвелл, наиболее полно развил датский физик Л.Лоренц с помощью скалярного и векторного запаздывающих потенциалов, почти таких же, как и в современной теории. Максвелл отвергал идею запаздывающего действия на расстоянии, будь то потенциалы или силы. «Эти физические гипотезы совершенно чужды моим представлениям о природе вещей», – писал он. Тем не менее, теория Римана и Лоренца в математическом отношении была идентична его теории, и в конце концов он согласился, что в пользу теории дальнодействия свидетельствуют более убедительные доказательства. В своем Трактате об электричестве и магнетизме (Treatise on Electricity and Magnetism , 1873) он писал: «Не следует упускать из виду, что мы сделали всего лишь один шаг в теории действия среды. Мы высказали предположение, что она находится в состоянии напряжения, но совершенно не объяснили, что это за напряжение и как оно поддерживается».

В 1895 голландский физик Х.Лоренц объединил ранние ограниченные теории взаимодействия между неподвижными зарядами и токами, которые предвосхищали теорию запаздывающих потенциалов Л.Лоренца и были созданы в основном Вебером, с общей теорией Максвелла. Х.Лоренц рассматривал материю как содержащую электрические заряды, которые, различными способами взаимодействуя между собой, производят все известные электромагнитные явления. Вместо того чтобы принять концепцию запаздывающего действия на расстоянии, описываемого запаздывающими потенциалами Римана и Л.Лоренца, он исходил из предположения, что движение зарядов создает электромагнитное поле , способное распространяться сквозь эфир и переносить импульс и энергию от одной системы зарядов к другой. Но необходимо ли для распространения электромагнитного поля в виде электромагнитной волны существование такой среды, как эфир? Многочисленные эксперименты, призванные подтвердить существование эфира, в том числе и эксперимент по «увлечению эфира», дали отрицательный результат. Более того, гипотеза о существовании эфира оказалась в противоречии с теорией относительности и с положением о постоянстве скорости света. Вывод можно проиллюстрировать словами А.Эйнштейна: «Если эфиру не свойственно никакое конкретное состояние движения, то вряд ли имеет смысл вводить его как некую сущность особого рода наряду с пространством».

Излучение и распространение электромагнитных волн.

Движущиеся с ускорением электрические заряды и периодически изменяющиеся токи воздействуют друг на друга с некоторыми силами. Величина и направление этих сил зависят от таких факторов, как конфигурация и размеры области, содержащей заряды и токи, величина и относительное направление токов, электрические свойства данной среды и изменения в концентрации зарядов и распределении токов источника. Из-за сложности общей постановки задачи закон сил нельзя представить в виде одной формулы. Структура, именуемая электромагнитным полем, которую при желании можно рассматривать как чисто математический объект, определяется распределением токов и зарядов, создаваемым заданным источником с учетом граничных условий, определяемых формой области взаимодействия и свойствами материала. Когда речь идет о неограниченном пространстве, эти условия дополняются особым граничным условием – условием излучения . Последнее гарантирует «правильное» поведение поля на бесконечности.

Электромагнитное поле характеризуется вектором напряженности электрического поля E и вектором магнитной индукции B , каждый из которых в любой точке пространства имеет определенную величину и направление. На рис. 2 схематически изображена электромагнитная волна с векторами E и B , распространяющаяся в положительном направлении оси х . Электрическое и магнитное поля тесно взаимосвязаны: они представляют собой компоненты единого электромагнитного поля, поскольку переходят друг в друга при преобразованиях Лоренца. Говорят, что векторное поле линейно (плоско) поляризовано, если направление вектора остается всюду фиксированным, а его длина периодически изменяется. Если вектор вращается, но длина его не меняется, то говорят, что поле имеет круговую поляризацию; если же длина вектора периодически изменяется, а сам он вращается, то поле называется эллиптически поляризованным.

Соотношение между электромагнитным полем и колеблющимися токами и зарядами, поддерживающими это поле, можно проиллюстрировать на относительно простом, но очень наглядном примере антенны типа полуволнового симметричного вибратора (рис. 3). Если тонкую проволоку, длина которой составляет половину длины волны излучения, разрезать посередине и к разрезу подключить высокочастотный генератор, то приложенное переменное напряжение будет поддерживать примерно синусоидальное распределение тока в вибраторе. В момент времени t = 0, когда амплитуда тока достигает максимального значения, а вектор скорости положительных зарядов направлен вверх (отрицательных – вниз), в любой точке антенны заряд, приходящийся на единицу ее длины, равен нулю. По прошествии первой четверти периода (t = T /4) положительные заряды будут сосредоточены на верхней половине антенны, а отрицательные – на нижней. При этом ток равен нулю (рис. 3,б ). В момент t = T /2 заряд, приходящийся на единицу длины, равен нулю, а вектор скорости положительных зарядов направлен вниз (рис. 3,в ). Затем к концу третьей четверти заряды перераспределяются (рис. 3,г ), а по ее завершении заканчивается полный период колебаний (t = T ) и все снова выглядит так, как на рис. 3,а .

Чтобы сигнал (например, меняющийся во времени ток, приводящий в действие громкоговоритель радиоприемника) можно было передать на расстояние, излучение передатчика нужно промодулировать путем, например, изменения амплитуды тока в передающей антенне в соответствии с сигналом, что повлечет за собой модуляцию амплитуды колебаний электромагнитного поля (рис. 4).

Передающая антенна является той частью передатчика, где электрические заряды и токи совершают колебания, излучая в окружающее пространство электромагнитное поле. Антенна может иметь самые разнообразные конфигурации, в зависимости от того, какую форму электромагнитного поля необходимо получить. Она может быть одиночным симметричным вибратором или же системой симметричных вибраторов, расположенных на определенном расстоянии друг от друга и обеспечивающих необходимое соотношение между амплитудами и фазами токов. Антенна может представлять собой симметричный вибратор, расположенный перед сравнительно большой плоской или изогнутой металлической поверхностью, играющей роль отражателя. В диапазоне сантиметровых и миллиметровых волн особенно эффективна антенна в форме рупора, соединенного с металлической трубой-волноводом, который играет роль линии передачи. Токи в короткой антенне на входе волновода индуцируют переменные токи на его внутренней поверхности. Эти токи и связанное с ними электромагнитное поле распространяются по волноводу к рупору.

Меняя конструкцию антенны и ее геометрию, можно добиться такого соотношения амплитуд и фаз колебаний токов в различных ее частях, чтобы излучение усиливалось в одних направлениях и ослаблялось в других (антенны направленного действия).

На больших расстояниях от антенны любого типа электромагнитное поле имеет довольно простой вид: в любой данной точке векторы напряженности электрического поля Е и индукции магнитного поля В колеблются в фазе во взаимно перпендикулярных плоскостях, убывая обратно пропорционально расстоянию от источника. При этом волновой фронт имеет форму увеличивающейся в размерах сферы, а вектор потока энергии (вектор Пойнтинга) направлен вовне по ее радиусам. Интеграл от вектора Пойнтинга по всей сфере дает полную, усредненную по времени, излучаемую энергию. При этом волны, распространяющиеся в радиальном направлении со скоростью света, переносят от источника не только колебания векторов E и B , но также импульс поля и его энергию.

Прием электромагнитных волн и явление рассеяния.

Если в зоне электромагнитного поля, распространяющегося от удаленного источника, поместить проводящий цилиндр, то индуцированные в нем токи будут пропорциональны напряженности электромагнитного поля и, кроме того, будут зависеть от ориентации цилиндра относительно фронта падающей волны и от направления вектора напряженности электрического поля. Если цилиндр имеет вид проволоки, диаметр которой мал по сравнению с длиной волны, то индуцированный ток будет максимальным, когда проволока параллельна вектору Е падающей волны. Если проволоку разрезать посередине и к образовавшимся выводам присоединить нагрузку, то к ней будет подводиться энергия, как это и имеет место в случае радиоприемника. Токи в этой проволоке ведут себя так же, как и переменные токи в передающей антенне, а потому она тоже излучает поле в окружающее пространство (т.е. происходит рассеяние падающей волны).

Отражение и преломление электромагнитных волн.

Передающую антенну обычно устанавливают высоко над поверхностью земли. Если антенна находится в сухой песчаной или скалистой местности, то грунт ведет себя как изолятор (диэлектрик), и токи, индуцируемые в нем антенной, связаны с внутриатомными колебаниями, поскольку здесь нет свободных носителей заряда, как в проводниках и ионизованных газах. Эти микроскопические колебания создают над поверхностью земли поле отраженной от земной поверхности электромагнитной волны и, кроме того, изменяют направление распространения волны, входящей в грунт. Эта волна движется с меньшей скоростью и под меньшим углом к нормали, чем падающая. Такое явление называется преломлением. Если же волна падает на участок поверхности земли, имеющий, наряду с диэлектрическими, также и проводящие свойства, то общая картина для преломленной волны выглядит намного сложнее. Как и прежде, волна меняет направление движения у границы раздела, но теперь поле в грунте распространяется таким образом, что поверхности равных фаз уже не совпадают с поверхностями равных амплитуд, как это обычно имеет место в случае плоской волны. Кроме того, быстро затухает амплитуда волновых колебаний, поскольку электроны проводимости при столкновениях отдают свою энергию атомам. В результате энергия волновых колебаний переходит в энергию хаотического теплового движения и рассеивается. Поэтому там, где грунт проводит электричество, волны не могут проникнуть в него на большую глубину. То же самое относится и к морской воде, чем затрудняется радиосвязь с подводными лодками.

В верхних слоях земной атмосферы располагается слой ионизованного газа, который называется ионосферой. Он состоит из свободных электронов и положительно заряженных ионов. Под действием посылаемых с земли электромагнитных волн заряженные частицы ионосферы начинают колебаться и излучать собственное электромагнитное поле. Заряженные ионосферные частицы взаимодействуют с посланной волной примерно так же, как и частицы диэлектрика в рассмотренном выше случае. Однако электроны ионосферы не связаны с атомами, как в диэлектрике. Они реагируют на электрическое поле посланной волны не мгновенно, а с некоторым сдвигом по фазе. В результате волна в ионосфере распространяется не под меньшим, как в диэлектрике, а под бóльшим углом к нормали, чем посланная с земли падающая волна, причем фазовая скорость волны в ионосфере оказывается больше скорости света c . Когда волна падает под некоторым критическим углом, угол между преломленным лучом и нормалью становится близок к прямому, а при дальнейшем увеличении угла падения излучение отражается в сторону Земли. Очевидно, что в этом случае электроны ионосферы создают поле, которым компенсируется поле преломленной волны в вертикальном направлении, а ионосфера действует как зеркало.

Энергия и импульс излучения.

В современной физике выбор между теорией электромагнитного поля Максвелла и теорией запаздывающего дальнодействия делается в пользу теории Максвелла. До тех пор, пока нас интересует только взаимодействие источника и приемника, обе теории одинаково хороши. Однако теория дальнодействия не дает никакого ответа на вопрос, где находится энергия, которую уже излучил источник, но еще не принял приемник. Согласно теории Максвелла, источник передает энергию электромагнитной волне, в которой она и находится, пока не будет передана поглотившему волну приемнику. При этом на каждом этапе соблюдается закон сохранения энергии.

Таким образом, электромагнитные волны обладают энергией (а также импульсом), что заставляет считать их столь же реальными, как, например, атомы. Электроны и протоны, находящиеся на Солнце, передают энергию электромагнитному излучению, в основном в инфракрасной, видимой и ультрафиолетовой областях спектра; примерно через 500 с, достигнув Земли, оно эту энергию отдает: повышается температура, в зеленых листьях растений происходит фотосинтез, и т.д. В 1901 П.Н.Лебедев экспериментально измерил давление света, подтвердив, что свет имеет не только энергию, но и импульс (причем соотношение между ними согласуется с теорией Максвелла).

Фотоны и квантовая теория.

На рубеже 19 и 20 вв., когда казалось, что исчерпывающая теория электромагнитного излучения, наконец, построена, природа преподнесла очередной сюрприз: оказалось, что помимо волновых свойств, описываемых теорией Максвелла, излучение проявляет также свойства частиц, причем тем сильнее, чем короче длина волны. Особенно ярко эти свойства проявляются в явлении фотоэффекта (выбивания электронов из поверхности металла под действием света), открытого в 1887 Г.Герцем. Оказалось, что энергия каждого выбитого электрона зависит от частоты n падающего света, но не от его интенсивности. Это свидетельствует о том, что энергия, связанная со световой волной, передается дискретными порциями – квантами. Если увеличивать интенсивность падающего света, то растет число выбитых в единицу времени электронов, но не энергия каждого из них. Иными словами, излучение передает энергию определенными минимальными порциями – как бы частицами света, которые были названы фотонами. Фотон не имеет ни массы покоя, ни заряда, но обладает спином, а также импульсом, равным hn /c , и энергией, равной hn ; он перемещается в свободном пространстве с постоянной скоростью c .

Каким же образом электромагнитное излучение может иметь все свойства волн, проявляющиеся в интерференции и дифракции, но вести себя как поток частиц в случае фотоэффекта? В настоящее время наиболее удовлетворительное объяснение этой двойственности можно найти в сложном формализме квантовой электродинамики. Но и эта изощренная теория имеет свои трудности, а ее математическая непротиворечивость вызывает сомнения. ЧАСТИЦЫ ЭЛЕМЕНТАРНЫЕ; ФОТОЭЛЕКТРИЧЕСКИЙ ЭФФЕКТ; КВАНТОВАЯ МЕХАНИКА; ВЕКТОР.

К счастью, в макроскопических задачах излучения и приема миллиметровых и более длинных электромагнитных волн квантовомеханические эффекты обычно не имеют существенного значения. Число фотонов, излучаемых, например, симметричной вибраторной антенной, столь велико, а энергия, переносимая каждым из них, столь мала, что можно забыть о дискретных квантах и считать, что испускание излучения – непрерывный процесс.

Влияние электромагнитного излучения на человека

Мы живем на планете, которая постоянно (24 часа, 7 дней в неделю) оказывает на нас различного рода воздействия. Электромагнитное излучение, влияние на человека которого увеличилось в последние годы, является одним из основных факторов, определяющих не только наш быт, но и наше состояние здоровья. Рассмотрим, как именно происходит воздействие электромагнитного излучения на человека, и какие последствия им вызваны.

Источники электромагнитного излучения

На нашей планете существует природный радиационный фон (ПРФ) в виде нескончаемого потока высокоэнергетических частичек, в котором существует живая материя. ПРФ составляют космические излучения (около 16%), гамма-излучения Земли (почти 22%), излучения живых организмов (в пределах 20%), а также излучения торона и радона (42%).

ПРФ является ионизирующим излучением, энергия частиц которого при поглощении клеткой организма способна индуцировать разложение или возбуждение веществ на молекулярном уровне. В течение 1 часа в живых клетках происходит в среднем 200 миллионов — 6 миллиардов таких превращений. Выходит, что все организмы Земли в каждую секунду, начиная с момента зачатия и заканчивая смертью, попадают под влияние электромагнитного излучения естественного происхождения.

Развиваясь, люди начали пользоваться электромагнитной энергией в своих целях. Так, человечество создало электромагнитное поле (ЭМП) искусственного происхождения. Но за короткий период своего существования оно уже существенно превышает уровень ПРФ. Мировые энергоресурсы увеличиваются вдвое почти каждые 10 лет, что также влияет на рост ЭМП.

Наибольшее влияние электромагнитного излучения на здоровье человека и других животных организмов происходит в техногенных радиочастотных ЭМП и низкочастотных полях. Так, в локализации подстанций и воздушных линий сверхвысокого напряжения напряженность промышленного магнитного поля выше естественного уровня магнитных полей планеты в среднем на 2-3 порядка.

С развитием искусственного ЭМП из-за использования радиопередающих средств коммуникации (в том числе и мобильных телефонов, телевизоров, радиоприемников, компьютеров и пр.) возникло явление электромагнитного загрязнения, или «смога». Неионизирующие электромагнитные излучения низких частот (до 1000 Гц) создаются электротранспортом, многочисленными линиями передач и кабельными трассами. Некоторые эксперты ВОЗ полагают, что на сегодняшний день уровень ЭМ загрязнения планеты сравнялся с ее химическим загрязнением.

Одно из наисильнейших воздействий электромагнитного излучения на человека в городах оказывают центры радиотелевизионных передач, которые излучают вокруг себя ультракороткие волны высокой частоты. Давно отмечено сильное влияние электромагнитных волн на организм человека от бытовой электротехники. Для сравнения: когда человек сушит волосы феном, влияющий на него прибор вырабатывает магнитную индукцию в пределах 2000 мкТл, тогда как природный ЭМ фон Земли не превышает отметку в 30-60 мкТл. Мобильные телефоны, которых у некоторых людей насчитывается несколько штук, излучают дециметровые волны большой проникающей способности. В микроволновых печах для приготовления и подогрева пищи применяется энергия сверхвысокочастотных электромагнитных волн.

Взаимодействие ЭМП с человеческим организмом

На сегодняшний день в ходе массы исследований достоверно установлено воздействие электромагнитных полей на человека, которые возникли антропогенным путем. Техногенные ЭМП несут в себе потоки разных длин и частот, неблагоприятных резонансных явлений, сверхвысокочастотных излучений, от которых тело человека пока еще не выработало защиту.

Регулярное воздействие электромагнитного поля искусственного происхождения может отражаться на работоспособности людей, способности к запоминанию, внимании, приводить ко многим заболеваниям различных систем органов. Антропогенный магнитный фон в разы увеличивает вероятность развития сердечно-сосудистых и эндокринных заболеваний, злокачественных опухолей, иммунодефицита, эректильной дисфункции у мужчин.

Но если сильное воздействие электромагнитных полей на организм человека достаточно исследовано, то влияние слабых эффектов во многом еще остается загадкой. Предполагается, что именно слабые воздействия оказывают опосредованное влияние в виде канцерогенных и генетических эффектов.

Рассмотрим, как влияние на организм людей оказывают электромагнитные поля низкой и высокой частоты.

Эффекты ЭМП низкой частоты на человеческое тело

Воздействие низкочастотного электромагнитного поля на человека происходит так, что последний играет роль проводника. ЭМП низкой частоты провоцирует в теле возникновение тока. Так как электромагнитные волны в данном случае имеют длину, во много раз превосходящую размеры человека, они оказывают эффект на весь организм. Наши ткани и органы имеют различное друг от друга строение, то есть они имеют различные электрические свойства. Из-за этого воздействие на человека ЭМП низкой частоты будет отличаться в разных частях тела. Наиболее чувствительными к низкочастотному излучению оказываются структуры нервной системы.

Влияние электромагнитных излучений на организм человека проявляется в небольшом повышении температуры тканей, непосредственно контактирующих с волнами низкой частоты. Были изучены эффекты низкочастотного волнового излучения на увеличение выработки гормонов гипофиза и коры надпочечников, что в большинстве случаев ведет к активации элементов половой системы.

Исследователи установили определенную связь между развитием онкологических образований и влиянием электромагнитного поля на организм человека, но эти результаты требуют дополнительных анализов и повторов. На сегодня точно определена роль низкочастотного ЭМП на возникновение лейкоза и рака головного мозга у людей разных возрастов, которые регулярно подвергаются облучению.

Опасными для человеческого тела являются также сверхнизкочастотные электромагнитные излучения. Они могут оказать такое же действие на электромагнитное поле человека, как и радиация.

Как действуют на человека ЭМП высокой частоты?

Реакция организма на излучения высокой частоты (в отличие от низкочастотного ЭМП) проявляется в нагреве тканей, непосредственно подвергшихся воздействию облучения. Причем тепловая реакция усиливается пропорционально росту частоты ЭМП. В отличие от тока низкой частоты высокочастотный ток не приводит к возбуждению нервных и мышечных клеток.

Влияние электромагнитных полей на человека может происходить как локально (на определенные участки тела), так и на весь организм. Это зависит от того, полностью или частично происходит действие электромагнитного излучения на организм человека, а еще от длины волны.

Энергия сверхвысокочастотного излучения больше всего поглощается водными средами организма. Эти волны почти не вступают во взаимодействие с кожным покровом и жировой тканью, но оказывают эффект на мышечные волокна и внутренние органы. Сейчас детально изучаются эффекты сверхвысокочастотного излучения низкой интенсивности на центральную нервную систему людей. Было установлено, что оно оказывает на организм кардиотропное действие.

Отдельное внимание нужно уделить влиянию микроволновых излучений на здоровье человека. Наибольшая доля в микроволновом загрязнении отводится радиостанциям и тем объектам, которые генерируют электромагнитное излучение в сверхвысокочастотном диапазоне. У работников подобных станций систематически возникают мигрень, недомогание, заторможенность, проблемы с запоминанием и пр.

В зависимости от характера облучения и величины дозы поражение микроволнами принято разделять на острое и хроническое. Для острого поражения характерны термогенный эффект и кратковременное воздействие излучения. При хроническом поражении микроволны воздействуют на тело человека в течение долгого времени. Страшно то, что влияние электромагнитного излучения на организм человека в этом случае проявляется отдаленно, а поэтому выявить его эффекты крайне сложно.

Многочисленные исследования установили высокую чувствительность определенных органов и тканей к влиянию ЭМП, а именно:

  • центральной нервной системы (перевозбуждение нервных клеток);
  • органов зрения;
  • половых желез (у мужчин развивается импотенция, снижается выработка тестостерона, а у женщин могут возникать выкидыши, токсикозы во время беременности, патологии во внутриутробном развитии плода);
  • органов сердечно-сосудистой системы (миокардиодистрофия, коронарная недостаточность и пр.);
  • желез внутренней секреции;
  • иммунной системы (при хроническом облучении возможно развитие лейкопении).

Влияние электромагнитного поля на здоровье человека проявляется в реакциях трех типов со стороны последнего: возбуждение, нагрев и кооперация. Первым двум посвящено много научных работ, третий остается все еще слабо изученным.

В последние годы вследствие развития технологий организм человека подвергается высокому уровню воздействия электромагнитного излучения (ЭМИ), что не могло не вызвать серьезного беспокойства во всем мире.

Каково же влияние на живые организмы? Их последствия зависят от того, к какой категории радиации - ионизирующей или нет - они относятся. Первый тип обладает высоким энергетическим потенциалом, который действует на атомы в клетках и приводит к изменению их естественного состояния. Это может быть смертельно опасным, так как вызывает раковые и другие заболевания. К неионизирующей радиации относят электромагнитное излучение в виде радиоволн, микроволнового излучения и электрических колебаний. Хотя структуру атома она изменить не может, но ее воздействие способно привести к необратимым последствиям.

Невидимая опасность

Публикации в научной литературе подняли вопрос о неблагоприятном воздействии на отдельных лиц и общество в целом неионизирующего излучения ЭМП, исходящего от силовых, электрических и беспроводных устройств в быту, на производстве, в учебных и общественных заведениях. Несмотря на многочисленные проблемы в установлении неопровержимых научных доказательств вреда и пробелы в выяснении точных механизмов его нанесения, эпидемиологический анализ все больше наводит на мысль о значительном потенциале травматического воздействия, производимого неионизирующим облучением. Защита от электромагнитного излучения становится все более актуальной.

В связи с тем, что медицинское образование не акцентирует внимание на состоянии окружающей среды, некоторые врачи не в полной мере осознают вероятные проблемы для здоровья, которые связаны с ЭМИ, и, как следствие этого, проявления неионизирующего излучения могут диагностироваться неверно и подвергаться неэффективному лечению.

Если возможность повреждения тканей и клеток, связанная с воздействием рентгеновского излучения, сомнений не вызывает, то влияние электромагнитных излучений на живые организмы, когда они исходят от ЛЭП, мобильных телефонов, электроприборов и некоторые машин, только недавно начало привлекать к себе внимание в качестве потенциальной угрозы здоровью.

Электромагнитный спектр

Относится к типу энергии, которая исходит или излучается далеко за пределы ее источника. Энергия электромагнитного излучения существует в различных формах, каждая из которых обладает различными физическими свойствами. Они могут быть измерены и выражены с помощью частоты или длины волны. Одни волны имеют высокую частоту, другие - среднюю и третьи - низкую. Диапазон электромагнитного излучения включает много различных форм энергии, исходящей из различных источников. Их название используется для классификации типов ЭМИ.

Короткая длина волны электромагнитного излучения, соответствующая высокой частоте, является характеристикой гамма-лучей, рентгеновского и ультрафиолетового излучения. Более спектра включают микроволновое излучение и радиоволны. Световое излучение относят к среднему участку спектра ЭМИ, оно обеспечивает нормальное зрение и является светом, который мы воспринимаем. Инфракрасная энергия ответственна за восприятие человеком тепла.

Большинство форм энергии, таких как рентгеновские лучи, ультрафиолет и радиоволны, невидимы и незаметны для человека. Для их обнаружения требуется измерение электромагнитного излучения с использованием специальных приборов, и, как следствие, люди не могут оценить степень воздействия энергетических полей в этих диапазонах.

Несмотря на отсутствие восприятия, действие высокочастотной энергии, включая рентгеновское излучение, называемое ионизирующим, потенциально опасно для клеток человека. Изменяя атомный состав клеточных структур, разбивая химические связи и индуцируя образование свободных радикалов, достаточное воздействие ионизирующей радиации может повредить генетический код в ДНК или спровоцировать мутации, тем самым увеличивая риск возникновения злокачественных новообразований или гибель клеток.

Антропогенное ЭМИ

Влияние электромагнитного излучения на организм, особенно неионизирующего, которым называют формы энергии с более низкими частотами, многими учеными недооценивалось. Считалось, что оно не производит неблагоприятного эффекта при нормальных уровнях воздействия. В последнее время, однако, появляется все больше данных, которые свидетельствуют о том, что некоторые частоты неионизирующего излучения могут потенциально приносить биологический вред. Большинство исследований их влияния на здоровье касалось следующих трех основных видов антропогенного ЭМИ:

  • нижняя шкала электромагнитных излучений от ЛЭП, электроприборов и электронного оборудования;
  • микроволновое и радиоизлучение беспроводных устройств связи, таких как сотовые телефоны, сотовые башни, антенны, а также телевизионные и радиовышки;
  • электрическое загрязнение вследствие работы некоторых видов техники (например, плазменных телевизоров, некоторых энергосберегающих приборов, двигателей с регулируемой частотой вращения и т. д.), производящих сигналы, частота электромагнитного излучения которых находится в диапазоне 3-150 кГц (распространяются и переизлучаются проводкой).

Токи в земле, которые иногда называют блуждающими, проводами не ограничены. Ток движется по пути наименьшего сопротивления и может проходить через любые доступные пути, в том числе по земле, проводам и различным объектам. Соответственно, электрическое напряжение также передается через землю и по строительным конструкциям посредством металлических водопроводных или канализационных труб, в результате чего неионизирующее излучение попадает в ближайшую окружающую среду.

ЭМИ и здоровье человека

В то время как исследования, изучавшие негативные свойства электромагнитных излучений, иногда давали противоречивые результаты, диагностика репродуктивной дисфункции и предрасположенности к раку, по всей видимости, подтверждает подозрения о том, что воздействие ЭМП может представлять угрозу здоровью человека. Неблагоприятный исход беременности, включая выкидыши, мертворождение, преждевременные роды, изменение соотношения полов и врожденные аномалии - все было связано с влиянием ЭМИ на мать.

В большом проспективном исследовании, опубликованном в журнале «Эпидемиология», например, сообщается о пиковом воздействии ЭМИ на 1063 беременных женщин в районе Сан-Франциско. Участники эксперимента носили детекторы магнитного поля, и ученые обнаружили значительный рост смертности плода при увеличении уровня максимального воздействия ЭМП.

ЭМИ и рак

Были изучены утверждения о том, что интенсивное воздействие некоторых частот ЭМИ может быть канцерогенным. Например, «Международный журнал рака» недавно опубликовал важное исследование по методу «случай-контроль» по связи между детской лейкемией и магнитными полями в Японии. Оценивая уровень электромагнитного излучения в спальнях, ученые подтвердили, что высокие уровни воздействия приводят к значительно большему риску заболевания детской лейкемией.

Физическое и психологическое воздействие

Люди с электромагнитной сверхчувствительностью часто страдают от истощения, которое может повлиять на любую часть организма, включая центральную нервную систему, опорно-двигательный аппарат, желудочно-кишечный тракт и эндокринную систему. Эти симптомы часто приводят к постоянному психологическому стрессу и страху попасть под действие ЭМИ. Многие пациенты становятся недееспособными от одной мысли о том, что невидимый сигнал беспроводной связи в любое время и в любом месте может спровоцировать болезненные ощущения в их организме. Постоянный страх и озабоченность проблемами со здоровьем влияют на самочувствие вплоть до развития фобии и боязни электричества, которые у некоторых вызывают желание покинуть цивилизацию.

Мобильные телефоны и телекоммуникация

Сотовые телефоны передают и принимают сигналы с помощью ЭМП, которые частично поглощаются их пользователями. Так как эти источники электромагнитного излучения обычно находятся в тесной близости с головой, эта особенность привела к появлению опасений о возможном неблагоприятном влиянии их использования на здоровье человека.

Одной из проблем экстраполяции результатов их применения в экспериментальных исследованиях на грызунах является то, что частота максимального поглощения РЧ-энергии зависит от размера тела, его формы, ориентации и положения.

Резонансное поглощение у крыс находится в диапазоне СВЧ и рабочих частот мобильных телефонов, используемых в опытах (от 0,5 до 3 ГГц), но в масштабе человеческого организма оно возникает при 100 МГц. Этот фактор может приниматься во внимание при расчетах мощности поглощенной дозы, но представляет проблему для тех исследований, в которых для определения уровня экспозиции используется лишь напряженность внешнего поля.

Относительная глубина проникновения у лабораторных животных по сравнению с размером головы человека больше, а параметры тканей и механизм перераспределения тепла различаются. Другим потенциальным источником неточностей в уровне экспозиции является воздействие радиочастотного излучения на клетку.

Действие высоковольтного излучения на людей и окружающую среду

Линии электропередач напряжением выше 100 кВ - это самые мощные источники электромагнитного излучения. Исследования радиационного воздействия на технический персонал стартовали с началом строительства первых 220-кВ ЛЭП, когда появились случаи ухудшения здоровья рабочих. Ввод в эксплуатацию линий электропередач напряжением 400 кВ привел к публикации многочисленных работ в этой области, которые впоследствии стали основой для принятия первых нормативных актов, ограничивающих действие 50-Гц электрического поля.

ЛЭП с напряжением более 500 кВ оказывают воздействие на окружающую среду в виде:

  • электрического поля частотой 50 Гц;
  • излучения ;
  • магнитного поля промышленной частоты.

ЭМП и нервная система

Гематоэнцефалический барьер млекопитающих состоит из эндотелиальных клеток, связанных с запирающими зонами, а также прилегающими перицитами и внеклеточным матриксом. Помогает поддерживать высокостабильную внеклеточную среду, необходимую для точной синаптической передачи, и защищает нервную ткань от повреждения. Увеличение его низкой проницаемости для гидрофильных и заряженных молекул может нанести вред здоровью.

Температура окружающей среды, превышающая пределы терморегуляции млекопитающих, повышает проницаемость гематоэнцефалического барьера для макромолекул. Нейрональное поглощение альбумина в различных областях мозга зависит от его температуры и проявляется при ее повышении на 1 °С и выше. Так как достаточно сильные радиочастотные поля могут привести к нагреванию тканей, логично предположить, что влияние на человека электромагнитного излучения имеет следствием повышенную проницаемость гематоэнцефалического барьера.

ЭМП и сон

Верхняя шкала электромагнитных излучений оказывает некоторое влияние на сон. Эта тема стала актуальной по нескольким причинам. Среди других симптомов жалобы на нарушения сна упоминались в анекдотических сообщениях о людях, считающих, что на них действует ЭМИ. Это привело к спекуляциям о том, что электромагнитные поля могут помешать нормальному течению сна с вытекающими отсюда последствиями для здоровья. Потенциальный риск нарушения сна следует рассматривать с учетом того, что он является очень сложным биологическим процессом, контролируемым центральной нервной системой. И хотя точные нейробиологические механизмы пока не установлены, регулярное чередование состояний бодрствования и покоя является необходимым требованием для обеспечения правильной работы мозга, метаболического гомеостаза и иммунной системы.

Кроме того, сон, как представляется, является именно той физиологической системой, изучение которой позволит выяснить влияние на человека электромагнитного излучения высокой частоты, так как в этом биологическом состоянии организм чутко реагирует на внешние раздражители. Есть данные о том, что слабые ЭМП, интенсивность которых значительно ниже той, при которой может возникнуть повышение температуры, также могут стать причиной биологического воздействия.

В настоящее время исследования влияния неионизирующего высокочастотного ЭМИ четко ориентированы на риск развития рака, что объясняется беспокойством по поводу канцерогенных свойств ионизирующего излучения.

Негативные проявления

Таким образом, влияние на человека электромагнитного излучения, даже неионизирующего, имеет место, особенно в случае высоковольтных ЛЭП и эффекта короны. СВЧ-излучение воздействует на нервную, сердечно-сосудистую, иммунную и репродуктивную системы, в том числе вызывая повреждение нервной системы, изменяя ее реакцию, электроэнцефалограмму, гематоэнцефалитический барьер, провоцируя нарушение (бодрствования - сна) путем вмешательства в работу шишковидной железы и создавая гормональный дисбаланс, изменения сердечного ритма и кровяного давления, ухудшая иммунитет по отношению к патогенам, вызывая слабость, истощение, проблемы роста, повреждения ДНК и рак.

Рекомендуется возводить здания вдали от источников ЭМИ, а защита от электромагнитного излучения высоковольтных ЛЭП должна быть обязательной. В городах кабели необходимо прокладывать под землей, а также использовать оборудование, нейтрализующее действие ЭМИ.

По результатам корреляционного анализа, основанного на экспериментальных данных, был сделан вывод о том, что значительно уменьшить влияние на человека электромагнитного излучения ЛЭП можно, сократив расстояние провеса проводов, что приведет к увеличению дистанции между токопроводящей линией и точкой измерения. Кроме того, на это расстояние оказывает влияние и рельеф местности под ЛЭП.

Меры предосторожности

Электричество является неотъемлемой частью жизни современного общества. Это означает, что ЭМИ всегда будет вокруг нас. И для того чтобы ЭМП делали нашу жизнь проще, а не короче, следует соблюдать некоторые меры предосторожности:

  • Не стоит позволять детям играть вблизи линий электропередач, трансформаторов, спутниковых передатчиков и источников микроволнового излучения.
  • Следует избегать мест, где плотность превышает 1 мГс. Следует замерить уровень ЭМП приборов в выключенном и работающем состоянии.
  • Необходимо провести перестановку в офисе или дома таким образом, чтобы не подвергаться действию поля электроприборов и компьютеров.
  • Нельзя слишком близко сидеть перед компьютером. Мониторы сильно различаются по силе их ЭМИ. Не следует стоять у работающей микроволновой печи.
  • Переместить электроприборы как минимум на 2 м от кровати. Нельзя допускать наличия проводки под кроватью. Демонтировать диммеры и 3-позиционные переключатели.
  • Следует соблюдать меры предосторожности при использовании беспроводных устройств, таких как электрические зубные щетки, бритвы.
  • Кроме того, рекомендуется носить как можно меньше ювелирных изделий и снимать их на ночь.
  • Также необходимо помнить о том, что ЭМИ проходит сквозь стены, и учитывать источники в соседней комнате или за стенами помещения.

Широко распространенными источниками ЭМП в населенных местах в настоящее время являются радиотехнические передающие центры (РТПЦ), излучающие в окружающую среду электромагнитные волны ВЧ и УВЧ-диапазонов. Сравнительный анализ санитарно-защитных зон и зон ограничения застройки в зоне действия таких объектов показал, что наибольшие уровни облучения людей и окружающей среды наблюдаются в районе размещения РТПЦ «старой постройки» с высотой антенной опоры не более 180 м. Наибольший вклад в суммарную интенсивность электромагнитного загрязнения вносят базовые станции сотовой связи, функциональные теле- и радиопередатчики, радиорелейные станции, радиолокационные станции, СВЧ-приборы. Отказываться от изобретений, облегчающих жизнь, конечно же, не стоит. Но, чтобы технический прогресс не стал из помощника врагом, следует лишь соблюдать некоторые правила и разумно использовать технические новшества. - системы производства, передачи, распределения и потребления электроэнергии постоянного и переменного тока (0-3 кГц): электростанции, линии электропередачи (ВЛ), трансформаторные подстанции, домовые распределительные щиты электропитания, кабели электропитания, электропро­водка, выпрямители и преобразователи тока); - бытовые приборы; - транспорт на электроприводе (0-3 кГц): железнодорожный транспорт и его инфраструктура, городской транспорт — метрополитен, троллейбусы, трамваи и т. п. — является относительно мощным источником магнитного поля в диапазоне частот от 0 до 1000 Гц. Максимальные значения плотности потока магнитной индукции (В) в пригородных электричках достигают 75 мкТл при среднем значении 20 мкТл; - функциональные передатчики: радиовещательные станции низких частот (30 — 300 кГц), средних частот (0,3 — 3 МГц), высоких частот (3 — 30 МГц) и сверхвысоких частот (30 — 300 МГц); телевизионные передатчики; базовые станции систем подвижной (в т. ч. сотовой) радиосвязи; наземные станции космической связи; радиорелейные станции; радиолокационные станции и т.п. В длинном перечне источников электромагнитного загрязнения можно выделить в первую очередь те, с которыми приходится сталкиваться чаще всего.

Линии электропередачи

Провода работающей линии электропередачи (ЛЭП) создают в прилегающем пространстве электромагнитные поля промышленной частоты. Расстояние, на которое распространяются эти поля от проводов линии, достигает десятков метров. Дальность, распространение и величина поля зависит от класса напряжения ЛЭП (цифра, обозначающая класс напряжения стоит в названии — например, ЛЭП 220 кВ), чем выше напряжение — тем больше зона повышенного уровня электромагнитного поля, при этом размеры зоны не изменяются в течение времени работы линии электропередачи. Поскольку нагрузка ЛЭП может неоднократно изменяться как в течении суток, так и с изменением сезонов года, размеры зоны повышенного уровня магнитного поля также меняются. Границы санитарно-защитных зон для линий электропередачи на действующих линиях определяются по критерию напряженности электрического поля — 1 кВ/м. К размещению воздушных линий ультравысоких напряжений (750 и 1150 кВ) предъявляются дополнительные требования по условиям воздействия электрического поля на население. Так, ближайшее расстояние от оси проектируемых воздушных линий электропередачи 750 и 1150 кВ до границ населенных пунктов должно быть, как правило, не менее 250 и 300 м соответственно.

Бытовые электроприборы

Наиболее мощными следует признать СВЧ-печи, аэрогрили, холодильники с системой «без инея», электроплиты, телевизоры, компьютеры. Реально создаваемое ЭМП в зависимости от конкретной модели и режима работы может сильно различаться среди оборудования одного типа. Значения электромагнитного поля тесно связаны с мощностью прибора. Причем степень загрязнения увеличивается в геометрической прогрессии с увеличением мощности.

Функциональные передатчики

Радиолокационные системы работают на частотах от 500 МГц до 15 ГГц, однако отдельные системы могут работать на частотах до 100 ГГц. Создаваемый ими ЭМ-сигнал принципиально отличается от излучения иных источников. Связано это с тем, что периодическое перемещение антенны в пространстве приводит к пространственной прерывистости облучения. Временная прерывистость облучения обусловлена цикличностью работы радиолокатора на излучение. Время наработки в различных режимах работы радиотехнических средств может исчисляться от нескольких часов до суток. Так у метеорологических радиолокаторов с временной прерывистостью 30 мин — излучение, 30 мин — пауза, суммарная наработка не превышает 12 ч, в то время как радиолокационные станции аэропортов в большинстве случаев работают круглосуточно. Ширина диаграммы направленности в горизонтальной плоскости обычно составляет несколько градусов, а длительность облучения за период обзора составляет десятки миллисекунд. Радары метеорологические могут создавать на удалении 1 км ППЭ ~ 100 Вт/м 2 за каждый цикл облучения. Радиолокационные станции аэропортов создают ППЭ ~ 0,5 Вт/м 2 на расстоянии 60 м. Морское радиолокационное оборудование устанавливается на всех кораблях, обычно оно имеет мощность передатчика на порядок меньшую, чем у аэродромных радаров, поэтому в обычном режиме сканирования ППЭ, создаваемое на расстоянии нескольких метров, не превышает 10 Вт/м 2 . Возрастание мощности радиолокаторов различного назначения и использование остронаправленных антенн кругового обзора приводит к значительному увеличению интенсивности ЭМИ СВЧ-диапазона и создает на местности зоны большой протяженности с высокой плотностью потока энергии. Наиболее неблагоприятные условия отмечаются в жилых районах городов, в черте которых размещаются аэропорты.

Сотовая связь

Основными элементами системы сотовой связи являются базовые станции (БС) и мобильные радиотелефоны (МРТ). Базовые станции поддерживают радиосвязь с мобильными радиотелефонами, вследствие чего БС и МРТ являются источниками электромагнитного излучения. Важной особенностью системы сотовой радиосвязи является весьма эффективное использование выделяемого для работы системы радиочастотного спектра (многократное использование одних и тех же частот, применение различных методов доступа), что делает возможным обеспечение телефонной связью значительного числа абонентов. В работе системы применяется принцип деления некоторой территории на зоны, или «соты», радиусом обычно 0,5-10 километров. Базовые станции поддерживают связь с находящимися в их зоне действия мобильными радиотелефонами и работают в режиме приема и передачи сигнала. В зависимости от стандарта, БС излучают электромагнитную энергию в диапазоне частот от 463 до 1880 МГц. БС являются видом передающих радиотехнических объектов, мощность излучения которых (загрузка) не является постоянной 24 часа в сутки. Загрузка определяется наличием владельцев сотовых телефонов в зоне обслуживания конкретной базовой станции и их желанием воспользоваться телефоном для разговора, что, в свою очередь, коренным образом зависит от времени суток, места расположения БС, дня недели и др. В ночные часы загрузка БС практически равна нулю. Мобильный радиотелефон (МРТ) представляет собой малогабаритный приемопередатчик. В зависимости от стандарта телефона, передача ведется в диапазоне частот 453 — 1785 МГц. Мощность излучения МРТ является величиной переменной, в значительной степени зависящей от состояния канала связи «мобильный радиотелефон — базовая станция», т. е. чем выше уровень сигнала БС в месте приема, тем меньше мощность излучения МРТ. Максимальная мощность находится в границах 0,125-1 Вт, однако в реальной обстановке она обычно не превышает 0,05 — 0,2 Вт.

Вопрос о воздействии излучения МРТ на организм пользователя до сих пор остается открытым. Многочисленные исследования, проведенные учеными разных стран, включая Россию, на биологических объектах (в том числе, на добровольцах), привели к неоднозначным, иногда противоречащим друг другу, результатам. Неоспоримым остается лишь тот факт, что организм человека «откликается» на наличие излучения сотового телефона.

Спутниковая связь

Системы спутниковой связи состоят из приемопередающей станции на Земле и спутника, находящегося на орбите. Диаграмма направленности антенны станций спутниковой связи имеет ярко выраженной узконаправленный основной луч — главный лепесток. Плотность потока энергии (ППЭ) в главном лепестке диаграммы направленности может достигать нескольких сотен Вт/м 2 вблизи антенны, создавая также значительные уровни поля на большом удалении. Например, станция мощностью 225 кВт, работающая на частоте 2,38 ГГц, создает на расстоянии 100 км ППЭ равное 2,8 Вт/м 2 . Однако рассеяние энергии от основного луча очень небольшое и происходит больше всего в районе размещения антенны.

Теле- и радиостанции

Телевизионные передатчики располагаются, как правило, в городах. Передающие антенны размещаются обычно на высоте выше 110 м. С точки зрения оценки влияния на здоровье интерес представляют уровни поля на расстоянии от нескольких десятков метров до нескольких километров. Типичные значения напряженности электрического поля могут достигать 15 В/м на расстоянии 1 км от передатчика мощностью 1 МВт. В России в настоящее время проблема оценки уровня ЭМП телевизионных передатчиков особенно актуальна в связи с резким ростом числа телевизионных каналов и передающих станций. Передающие радиоцентры (ПРЦ) размещаются в специально отведенных для них зонах и могут занимать довольно большие территории (до 1000 га). По своей структуре они включают в себя одно или несколько технических зданий, где находятся радиопередатчики, и антенные поля, на которых располагаются до нескольких десятков антенно-фидерных систем (АФС). АФС включает в себя антенну, служащую для измерения радиоволн, и фидерную линию, подводящую к ней высокочастотную энергию, генерируемую передатчиком. Зону возможного неблагоприятного действия ЭМП, создаваемых ПРЦ, можно условно разделить на две части. Первая часть зоны — это собственно территория ПРЦ, где размещены все службы, обеспечивающие работу радиопередатчиков и АФС. Это территория охраняется и на нее допускаются только лица, профессионально связанные с обслуживанием передатчиков, коммутаторов и АФС. Вторая часть зоны — это прилегающие к ПРЦ территории, доступ на которые не ограничен и где могут размещаться различные жилые постройки, в этом случае возникает угроза облучения населения, находящегося в этой части зоны. Расположение ПРЦ может быть различным, например, в Москве и Санкт- Петербурге характерно размещение в непосредственной близости или среди жилой застройки. Широко распространенными источниками ЭМП в населенных местах в настоящее время являются радиотехнические передающие центры (РТПЦ), излучающие в окружающую среду электромагнитные волны ВЧ и УВЧ-диапазонов.

Каждая квартира таит в себе опасность. Мы даже не подозреваем, что живём в окружении электромагнитных полей (ЭМП), которые человек не может ни видеть, ни чувствовать, но это не значит, что их нет.

С самого зарождения жизни на нашей планете существовал стабильный электромагнитный фон (ЭМФ). Долгое время он был практически неизменен. Но, с развитием человечества, интенсивность данного фона стала расти с неимоверной скоростью. Линии электропередач, возрастающее число электроприборов, сотовая связь — все эти новшества стали источниками «электромагнитного загрязнения». Как электромагнитное поле влияет на человеческий организм, и каковы могут быть последствия этого воздействия?

Что такое электромагнитное излучение?

Помимо естественного ЭМФ, создаваемого электромагнитными волнами (ЭМВ) различной частоты, поступающими к нам из космоса, имеется и другое излучение — бытовое, которое возникает при работе разношёрстной электротехники, имеющейся в каждой квартире или офисе. Каждый бытовой прибор, взять хотя бы обыкновенный фен, при работе пропускает через себя электрический ток, образуя вокруг электромагнитное поле. Электромагнитное излучение (ЭМИ) — это и есть та сила, которая проявляется, когда ток проходит через любое электрическое устройство, воздействующая на всё, что находится около него, в том числе и на человека, который также является источником электромагнитного излучения. Чем больше сила тока, проходящего через прибор, тем мощнее излучение.

Чаще всего, человек не испытывает на себе заметного воздействия ЭМИ, но это не значит, что оно не оказывает на нас влияния. ЭМВ проходят через предметы незаметно, но, иногда, наиболее чувствительные люди ощущают некое покалывание или пощипывание.

Все мы по-разному реагируем на ЭМИ. Организм одних может нейтрализовать его воздействие, а есть индивиды, максимально подверженные этому влиянию, которое способно вызвать у них различные патологии. Особенно опасно для человека длительное воздействие ЭМИ. Например, если дом его находится вблизи линии высоковольтных передач.

В зависимости от длины волны, ЭМИ можно разделить на:

  • видимый свет — это то излучение, которое человек способен воспринимать зрительно. Длина световых волн варьируется от 380 до 780 нм (нанометров), то есть волны видимого света очень короткие;
  • инфракрасное излучение находится в электромагнитном спектре между световым излучением и радиоволнами. Длина инфракрасных волн больше световых и находится в диапазоне 780 нм — 1 мм;
  • радиоволны. Ими же являются и микроволны, которые излучает СВЧ-печь. Это самые длинные волны. К ним относятся всё электромагнитное излучение с волнами длиной от полмиллиметра;
  • ультрафиолетовое излучение, являющееся вредным для большинства живых существ. Длина таких волн составляет 10-400 нм, а расположены они в диапазоне между видимым и рентгеновским излучениями;
  • рентгеновское излучение выделяется электронами и имеет широкий диапазон длин волн — от 8·10 — 6 до 10 — 12 см. Это излучение известно всем по медицинским аппаратам;
  • гамма-излучение является самым коротковолновым (длина такой волны менее 2·10 −10 м), и имеет наиболее высокую энергию излучения. Этот вид ЭМИ является наиболее опасным для человека.

На картинке ниже показан весь спектр электромагнитного излучения.

Источники излучения

Вокруг нас находится множество источников ЭМИ, которые излучают в пространство электромагнитные волны, не безопасные для организма человека. Все их перечислить нереально.

Хотелось бы заострить внимание на более глобальных, таких, как:

  • высоковольтные линии электропередач, имеющие высокое напряжение, и мощный уровень излучения. И если жилые дома расположены ближе 1000 метров к этим линиям, то возрастает риск заболевания онкологией у жителей таких домов;
  • электротранспорт — электрички и поезда метрополитена, трамваи и троллейбусы, а также обычные лифты;
  • радиотелевизионные вышки, излучение которых также особо опасно для человеческого здоровья, особенно тех, что установлены с нарушением санитарных норм;
  • функциональные передатчики — радары, локаторы, создающие ЭМИ на расстоянии до 1000 метров, поэтому, аэропорты и метеорологические станции стараются размещать как можно дальше от жилого сектора.

И на простых:

  • бытовых приборах, таких, как СВЧ-печь, компьютер, телевизор, фен, зарядные устройства, энергосберегающие лампы и др., которые имеются в каждом доме и являются неотъемлемой частью нашего быта;
  • мобильных телефонах, вокруг которых образуется электромагнитное поле, воздействующее на голову человека;
  • электропроводке и розетках;
  • медицинских аппаратах — рентген, компьютерный томограф и др., с которыми мы сталкиваемся при посещении медучреждений, имеющих самое сильное излучение.

Какие-то из этих источников имеют мощное воздействие на человека, какие-то — не очень. Всё равно, мы как пользовались, так и будем пользоваться этими приборами. Важно быть предельно осторожными при их использовании и уметь защитить себя от негативного воздействия, чтобы снизить до минимума причиняемый ими вред.

Примеры источников электромагнитного излучения приведены на рисунке.

Влияние ЭМИ на человека

Считается, что электромагнитное излучение оказывает негативное влияние как на здоровье человека, так и на его поведение, жизненный тонус, физиологические функции и даже мысли. Сам человек также является источником такого излучения, и если на наше электромагнитное поле начинают воздействовать другие, более интенсивные источники, то в человеческом организме может наступить полный хаос, который приведёт к различным заболеваниям.

Учёные установили, что вредны не сами волны, а их торсионная (информационная) составляющая, которая имеется в любом электромагнитном излучении, то есть именно торсионные поля оказывают неправильное воздействие на здоровье, передавая человеку негативную информацию.

Опасность излучения состоит и в том, что оно способно накапливаться в организме человека, и если длительно пользоваться, например, компьютером, мобильным телефоном и т. п., то возможны головная боль, высокая утомляемость, постоянные стрессы, снижение иммунитета, а также возрастает вероятность заболеваний нервной системы и головного мозга. Даже слабые поля, особенно такие, которые совпадают по частоте с ЭМИ человека, способны нанести вред здоровью, искажая наше собственное излучение, и, тем самым, вызывая различные болезни.

Огромное влияние на здоровье человека играют такие факторы электромагнитного излучения, как:

  • мощность источника и характер излучения;
  • его интенсивность;
  • длительность воздействия.

Также стоит отметить, что воздействие излучения может быть общим или местным. То есть, если взять мобильный телефон, то он оказывает влияние только на отдельный орган человека — головной мозг, а от радиолокатора происходит облучение всего организма.

Какое излучение возникает от тех или иных бытовых приборов, и их диапазон, видно из рисунка.

Глядя на эту таблицу, можно для себя уяснить, что чем дальше от человека располагается источник излучения, тем меньше его вредоносное влияние на организм. Если фен находится в непосредственной близости от головы, и его воздействие наносит ощутимый вред человеку, то холодильник практически никак не влияет на наше здоровье.

Как защититься от электромагнитного излучения

Опасность ЭМИ состоит в том, что человек никак не ощущает на себе его влияния, а оно существует и сильно вредит нашему здоровью. Если на рабочих местах имеется специальное защитное оборудование, то дома дела обстоят намного хуже.

Но защитить себя и своих близких от вредоносного влияния бытовых приборов всё же возможно, если следовать простым рекомендациям:

  • приобрести дозиметр, определяющий интенсивность излучения и замерять фон от различных бытовых приборов;
  • не включать сразу несколько электроприборов одновременно;
  • держаться от них, по возможности, на расстоянии;
  • располагать приборы так, чтобы они как можно дальше находились от мест длительного пребывания человека, например, обеденного стола или зоны отдыха;
  • в детских комнатах должно находиться как можно меньше источников излучения;
  • не нужно электроприборы группировать в одном месте;
  • мобильный телефон не стоит подносить к уху ближе, чем на 2,5 см;
  • телефонную базу держать подальше от спальни или рабочего стола:
  • не располагаться близко от телевизора или монитора компьютера;
  • выключать ненужные вам приборы. Если в данное время вы не пользуетесь компьютером или телевизором, не нужно держать их включёнными;
  • стараться сокращать время пользования прибором, не находиться около него постоянно.

Современная техника прочно вошла в наш быт. Мы не мыслим жизни без мобильного телефона или компьютера, а также микроволновой печи, которая у многих имеется не только дома, но и на рабочем месте. Отказаться от них вряд ли кто захочет, а вот использовать их разумно — в наших силах.