Классификация электрических линий напряжением выше 1 кв. Высоковольтные лэп

Классификация электрических линий напряжением выше 1 кв. Высоковольтные лэп
Классификация электрических линий напряжением выше 1 кв. Высоковольтные лэп

Расшифровка ЛЭП – аббревиатура от словосочетания «линия электропередачи». ЛЭП это важнейший компонент энергетических систем, который служит для передачи электроэнергии от генерирующих устройств к распределительным, преобразовательным и, в конечном итоге, к потребителям.

Классификация

Передача электрической энергии осуществляется по металлическим проводам, где проводником выступает медь или алюминий. Различается способ прокладки проводов:

  • По воздуху – воздушными линями;
  • В грунте (воде) – кабельными линиями;
  • Газоизолированными линиями.

Перечисленные виды ЛЭП являются основными. Проводятся эксперименты по беспроводной передаче энергии, но в настоящее время такой способ не нашел распространение на практике, за исключением маломощных устройств.

Воздушные линии электропередачи

Воздушные линии электропередач, ВЛЭП, характеризуются высокой сложностью. Их конструкция, порядок эксплуатации регламентируются специальной документацией. ВЛ характеризуются тем, что электроэнергия передается по проводам, проложенным на открытом воздухе. Для обеспечения безопасности, уменьшения потерь состав ВЛ достаточно сложен.

Состав ВЛ

Что такое ВЛ? Это не высоковольтная линия, как иногда считают. ВЛ – это целый комплекс конструкций и оборудования. Основные элементы, из которых состоит любая линия электропередач:

  • Токонесущие провода;
  • Несущие опоры;
  • Изоляторы.

Другие компоненты также важны, но их тип, номенклатура и количество зависят от различных факторов:

  • Арматура;
  • Грозозащитные тросы;
  • Устройства заземления;
  • Разрядники;
  • Устройства секционирования;
  • Маркировка для предупреждения летательных аппаратов;
  • Вспомогательное оборудование (аппаратура наложения связи, дистанционного контроля);
  • Волоконно-оптическая линия связи.

В состав арматуры входят крепежные изделия для соединения изоляторов, проводов, крепления их к опорам.

К сведению. Разрядники, заземление и устройства грозозащиты служат для обеспечения безопасности и повышения надежности при возникновении скачков напряжения, в том числе во время грозы.

Устройства секционирования позволяют производить отключение части ЛЕП на период проведения регламентных или аварийных работ.

Аппаратура высокочастотной и оптоволоконной связи предназначена для осуществления диспетчерского удаленного контроля и управления работой линии, устройств секционирования, подстанции и распределительных устройств.

Документы, регулирующие ВЛ

Основными документами, которые регулируют любую ЛЭП, являются Строительные нормы и правила (СНиП), а также Правила устройства электроустановок ПУЭ. Данные документы регламентируют проектирование, конструкцию, строительство и эксплуатацию воздушных линий электропередач.

Классификация ВЛ

Большое разнообразие конструкций и типов воздушных линий позволяет выделить в них группы, объединенные общими признаками.

По роду тока

Большинство существующих ЛЭП предназначено для работы с переменным током, что связано с простотой преобразования напряжения по величине.

Отдельные типы линий работают с постоянным током. Они предназначены для некоторых областей применения (питание контактной сети, мощных потребителей постоянного тока), но общая протяженность невелика, несмотря на меньшие потери на емкостной и индуктивной составляющих.

По назначению

  • Межсистемные (дальние) – для объединения нескольких энергетических систем. Сюда относятся ВЛ 500 кВ и выше;
  • Магистральные – для объединения электростанций в сеть в пределах одной энергосистемы и подачи электроэнергии на узловые подстанции;
  • Распределительные – для связи крупных предприятий и населенных пунктов с узловыми подстанциями;
  • ВЛ сельскохозяйственных потребителей;
  • Городская и сельская распределительная сеть.

По режиму работы нейтралей в электроустановках

  • Сети с глухозаземленной нейтралью;
  • Сети с изолированной нейтралью;
  • С резонансно-заземленной нейтралью;
  • С эффективно-заземленной нейтралью.

По режиму работы в зависимости от механического состояния

Основной режим работы ВЛ – нормальный, когда все провода и тросы находятся в исправном состоянии. Могут бывать случаи, когда часть проводов отсутствует, но ЛЭП эксплуатируется:

  • При полном или частичном обрыве – аварийный режим;
  • Во время монтажа проводов, опор – монтажный режим.

Основные элементы ВЛ

  • Трасса – расположение оси ЛЭП относительно поверхности земли;
  • Фундамент опоры – конструкция в грунте, на которую опирается опора, передавая ей нагрузку от внешних воздействий;
  • Длина пролета – расстояние между центрами соседних опор;
  • Стрела провеса – расстояние между нижней точкой провода и условной прямой между точками подвеса проводов;
  • Габарит провода – расстояние от нижней части провода до поверхности земли.

Кабельные линии электропередачи

Что такое кабельная ЛЭП? Данный тип линий электропередач отличается от ВЛ тем, что провода различных фаз изолированы и объединены в единый кабель.

По условиям прохождения

По условиям прохождения КЛ делят на:

  • Подземные;
  • Подводные;
  • По сооружениям.

Кабельные сооружения

Помимо того, что кабель может находиться в воде или земле, часть его обязательно проходит по кабельным сооружениям, к которым относятся:

  • Кабельные каналы;
  • Кабельная камера;
  • Кабельная шахта;
  • Двойной пол;
  • Кабельная галерея.

Данный перечень неполон, основное отличие кабельных сооружений от прочих – они предназначены исключительно для монтажа кабеля вместе с устройствами крепления, силовыми муфтами и ответвлениями.

По типу изоляции

Наибольшее распространение получили кабельные линии с твердой изоляцией:

  • Поливинилхлоридная;
  • Масляно-бумажная;
  • Резино-бумажная;
  • Полиэтиленовая (сшитый полиэтилен);
  • Этилен-пропиленовая.

Реже встречаются жидкостная и газовая изоляции.

Потери в ЛЭП

Потери в передающих линиях имеют различную природу и подразделяются на:

  • Потери на нагрев:
  • Потери на коронные разряды:
  • Потери на радиоизлучение;
  • Потери на передачу реактивной мощности.

Опоры ЛЭП и другие элементы

Основной элемент для крепления проводов линии электропередачи – опора. Опоры ЛЭП делятся на два типа:

  • Анкерные (концевые), на которых расположены устройства крепления и натяжения провода;
  • Промежуточные.

Опоры могут устанавливаться непосредственно в грунт или на фундамент. По материалу изготовления:

  • Деревянные;
  • Стальные;
  • Железобетонные.

Изоляторы и арматура

Изоляторы предназначены для крепления и изолирования проводов ЛЭП. Наибольшее преимущество получили подвесные изоляторы, которые позволяют из отдельных элементов сделать любую длину, в зависимости от требований. Как правило, чем выше напряжение в кВ, тем большую длину имеет гирлянда изоляторов.

Изготавливаются из:

  • Фарфора;
  • Стекла;
  • Полимерных материалов.

Арматура используется для соединения цепочек изоляторов, крепления их к опорам и проводам. В кабельных линиях к арматуре также относятся соединительные муфты.

Защитные приспособления

В качестве защиты используются грозозащитные проводники, разрядники и устройства заземления. Заземление металлических опор производится путем механического крепления несущей конструкции к заземляющему контуру. Особенно важно заземление железобетонных опор, поскольку при утечках тока он начинает протекать через арматуру бетона, оказывая разрушающее влияние. Вред, нанесенный опоре, визуально виден не будет.

Важно! Для наилучшей защиты охранный провод размещается выше всех остальных.

Технические характеристики

Техническая характеристика ЛЭП зависит не только от передаваемого напряжения и мощности. Должны учитываться следующие факторы:

  • Город или нежилая зона;
  • Доминирующие погодные условия (диапазон температур, скорость ветра);
  • Состояние грунта (твердый, движимый).

Что такое ЛЭП? Любая линия электропередач – это мощный источник электромагнитного поля. Расположенные вблизи жилья высоковольтные линии отрицательно влияют на здоровье. Определение минимального вреда здоровью и окружающей среде играет важную роль в проектировании ЛЭП.

Технические расчеты производят для того, чтобы определить, какой тип линии следует использовать для достижения наибольшей эффективности.

Видео

Какие линии электропередач бывают

Сеть линий электропередач необходима для перемещения и распределения электрической энергии: от ее источников, между населенными пунктами и конечными объектами потребления. Данные линии отличаются большим разнообразием и разделяются:

  • по типу размещения проводов – воздушные (расположенные на открытом воздухе) и кабельные (закрытые в изоляцию);
  • по назначению – сверхдальние, магистральные, распределительные.

Воздушные и кабельные линии электропередач обладают определенной классификацией, которая зависят от потребителя, рода тока, мощности, используемых материалов.

Воздушные линии электропередач (ВЛ)


К ним относятся линии, которые прокладываются на открытом воздухе над землей с использованием различных опор. Разделение линий электропередач важно для их выбора и обслуживания.

Различают линии:

  • по роду перемещаемого тока – переменный и постоянный;
  • по уровню напряжения – низковольтные (до 1000 В) и высоковольтные (более 1000 В) линии электропередач;
  • по нейтрале – сети с глухозаземленной, изолированной, эффективно-заземленной нейтралью.

Переменный ток

Электрические линии, использующие для передачи переменный ток, внедряются российскими компаниями чаще всего. С их помощью происходит питание систем и перемещение энергии на различные расстояния.

Постоянный ток

Воздушные линии электропередач, обеспечивающие передачу постоянного тока, используются в России редко. Главная причина этого – высокая стоимость монтажа. Кроме опор, проводов и различных элементов для них требуется покупка дополнительного оборудования – выпрямителей и инверторов.

Поскольку большинство потребителей использует переменный ток, при обустройстве таких линий, приходится тратить дополнительный ресурс на преобразование энергии.

Устройство воздушных ЛЭП

Устройство воздушных линий электропередач включают в себя следующие элементы:

  • Системы опоры или электрические столбы . Они размещаются на земле или других поверхностях и могут быть анкерными (принимают основную нагрузку), промежуточными (обычно используются для поддержания проводов в пролетах), угловыми (размещаются в местах, где линии проводов меняют направление).
  • Провода. Имеют свои разновидности, могут быть выполнены из алюминия, меди.
  • Траверсы. Они крепятся на опоры линий и служат основой для монтажа проводов.
  • Изоляторы. С их помощью монтируются провода и изолируются друг от друга.
  • Системы заземления. Наличие такой защиты необходимо в соответствии с нормами ПУЭ (правилами устройства электроустановок).
  • Молниезащита. Ее использование обеспечивает защиту воздушной линии электропередач от напряжения, которое может возникнуть при попадании разряда.

Каждый элемент электрической сети играет важную роль, принимая на себя определенную нагрузку. В некоторых случаях в ней может использоваться дополнительное оборудование.

Кабельные линии электропередач


Кабельные линии электропередач под напряжением в отличие от воздушных не требуют большой свободной площади для размещения. Благодаря наличию изоляционный защиты они могут быть проложены: на территории различных предприятий, в населенных пунктах с плотной застройкой. Единственный недостаток в сравнении с ВЛ – более высокая стоимость монтажа.

Подземные и подводные

Закрытий способ позволяет размещать линии даже в самых сложных условиях – под землей и под водной поверхностью. Для их прокладки могут использоваться специальные тоннели или другие способы. При этом можно применять несколько кабелей, а также различные крепежные детали.

Около электрических сетей устанавливаются специальные охранные зоны. Согласно правилам ПУЭ они должны обеспечить безопасность и нормальные условия эксплуатации.

Прокладка по сооружениям

Прокладка высоковольтных линий электропередач с различным напряжением возможна внутри сооружений. К наиболее часто используемым конструкциям относятся:

  • Тоннели. Они представляют собой отдельные помещения, внутри которых кабели располагаются по стенам или на специальных конструкциях. Такие пространства хорошо защищены и обеспечивают легкий доступ к монтажу и обслуживанию линий.
  • Каналы. Это готовые конструкции из пластика, железобетонных плит и других материалов, внутри которых располагаются провода.
  • Этаж или шахта. Помещения, специально приспособленные для размещения ЛЭП и возможности нахождения там человека.
  • Эстакада. Они представляют собой открытые сооружения, которые прокладываются на земле, фундаменте, опорных конструкциях с прикрепленными внутри проводами. Закрытые эстакады называются галереями.
  • Размещение в свободном пространстве зданий – зазоры, место под полом.
  • Кабельные блок. Кабели прокладываются под землей в специальных трубах и выводятся на поверхность с помощью специальных пластиковых или бетонных колодцев.

Изоляция кабельных ЛЭП


Главным условием при выборе материалов для изоляции ЛЭП является то, что они не должны проводить ток. Обычно в устройстве кабельных линий электропередач используются следующие материалы:

  • резина синтетического или природного происхождения (она отличается хорошей гибкостью, поэтому линии из такого материала легко прокладывать даже в труднодоступных местах);
  • полиэтилен (достаточно устойчив к воздействию химической или другой агрессивной среды);
  • ПВХ (главным преимуществом такой изоляции является доступность, хотя материал по стойкости и различным защитным свойствам уступает другим);
  • фторопластовые (отличаются высокой устойчивостью к различным воздействиям);
  • материалы на бумажной основе (малоустойчивы к химическим и природным воздействиям, даже при наличии пропитки защитным составом).

Кроме традиционных твердых материалов для таких линий могут применяться жидкостные изоляторы, а также специальные газы.

Классификация по назначению

Еще одной характеристикой, по которой происходит классификация линий электропередач с учетом напряжения, является их назначение. ВЛ принято делить на: сверхдальние, магистральные, распределительные. Они различаются в зависимости от мощности, типа получателя и отправителя энергии. Это могут быть крупные станции или потребители – заводы, населенные пункты.

Сверхдальние

Основным назначением данных линий является связь между различными энергетическими системами. Напряжение в данных воздушных линиях начинается от 500 кВ.

Магистральные

Данный формат ЛЭП предполагает напряжение в сети 220 и 330 кВ. Магистральные линии обеспечивают передачу энергии от электростанций до пунктов распределения. Также они могут использоваться для связи различных электростанций.

Распределительные

К виду распределительных линий относятся сети под напряжением 35, 110 и 150 кВ. С их помощью происходит перемещение электрической энергии от распределительных сетей к населенным пунктам, а также крупным предприятиям. Линии с напряжением менее 20 кВ используются, чтобы обеспечить поставку энергии конечным потребителям, в том числе для подключения электричества к участку .

Строительство и ремонт линий электропередач


Прокладка сетей высоковольтных кабельных линий электропередач и ВЛ – необходимый способ обеспечения энергией любых объектов. С их помощью осуществляется передача электроэнергии на любые расстояния.

Строительство сетей любого назначения представляет собой сложный процесс, который включает в себя несколько этапов:

  • Обследование местности.
  • Проектирование линий, составление сметы, технической документации.
  • Подготовку территории, подбор и закупка материалов.
  • Сборку опорных элементов или подготовка к установке кабеля.
  • Монтаж или закладывание проводов, подвесных устройств, укрепление ЛЭП.
  • Благоустройство территории и подготовка линии к запуску.
  • Ввод в эксплуатацию, официальное оформление документации.

Для обеспечения эффективной работы линии требуется ее грамотное техническое обслуживание, своевременный ремонт и при необходимости реконструкция. Все подобные мероприятия должны проводиться в соответствии с ПУЭ (правилами технических установок).

Ремонт электрических линий делится на текущий и капитальный. Во время первого производится контроль за состоянием работы системы, выполняются работы по замене различных элементов. Капитальный ремонт предполагает проведение более серьезных работ, которые могут включать замену опор, перетяжку линий, замену целых участков. Все виды работ определяются в зависимости от состояния ЛЭП.

Воздушными называются линии, предназначенные для передачи и рас-пределения ЭЭ по проводам, расположенным на открытом воздухе и под-держиваемым с помощью опор и изоляторов. Воздушные ЛЭП сооружаются и эксплуатируются в самых разнообразных климатических условиях и гео-графических районах, подвержены атмосферному воздействию (ветер, голо-лед, дождь, изменение температуры).

В связи с этим ВЛ должны сооружаться с учетом атмосферных явлений, загрязнения воздуха, условий прокладки (слабозаселенная местность, территория города, предприятия) и др. Из ана-лиза условий ВЛ следует, что материалы и конструкции линий должны удовлетворять ряду требований: экономически приемлемой стоимостью, хо-рошей электропроводностью и достаточной механической прочностью мате-риалов проводов и тросов, стойкостью их к коррозии, химическим воздействиям; линии должны быть электрически и экологически безопасны, занимать минимальную территорию.

Конструктивное исполнение воздушных линий. Основными конст-руктивными элементами ВЛ являются опоры, провода, грозозащитные тро-сы, изоляторы и линейная арматура .

По конструктивному исполнению опор наиболее распространены одно-и двухцепные ВЛ. На трассе линии могут сооружаться до четырех цепей. Трасса линии - полоса земли, на которой сооружается линия. Одна цепь вы-соковольтной ВЛ объединяет три провода (комплекта проводов) трехфазной линии, в низковольтной - от трех до пяти проводов. В целом конструктивная часть ВЛ (рис. 3.1) характеризуется типом опор, длинами пролетов, габарит-ными размерами, конструкцией фаз, количеством изоляторов.

Длины пролетов ВЛ l выбирают по экономическим соображениям, т. к. с увеличением длины пролета возрастает провис проводов, необходимо уве-личить высоту опор H, чтобы не нарушить допустимый габарит линии h (рис. 3.1, б), при этом уменьшится количество опор и изоляторов на линии. Габарит линии - наименьшее расстояние от нижней точки провода до земли (воды, полотна дороги) должно быть таким, чтобы обеспечить безопасность движения людей и транспорта под линией.

Это расстояние зависит от номи-нального напряжения линии и условий местности (населенная, ненаселен-ная). Расстояние между соседними фазами линии зависит главным образом от ее номинального напряжения. Конструкция фазы ВЛ в основном опреде-ляется количеством проводов в фазе. Если фаза выполнена несколькими про-водами, она называется расщепленной. Расщепленными выполняют фазы ВЛ высокого и сверхвысокого напряжения. При этом в одной фазе используют два провода при 330 (220) кВ, три - при 500 кВ, четыре-пять - при 750 кВ, восемь, одиннадцать - при 1150 кВ.


Опоры воздушных линий. Опоры ВЛ - конструкции, предназначен-ные для поддерживания проводов на необходимой высоте над землей, водой, или каким-то инженерным сооружением. Кроме того, на опорах в необходимых случаях подвешивают стальные заземленные тросы для защиты прово-дов от прямых ударов молнии и связанных с этим перенапряжений.

Типы и конструкции опор разнообразны. В зависимости от назначения и размещения на трассе ВЛ они подразделяются на промежуточные и анкер-ные. Отличаются опоры материалом, исполнением и способом крепления, подвязки проводов. В зависимости от материала они бывают деревянные, железобетонные и металлические.

Промежуточные опоры наиболее простые, служат для поддерживания проводов на прямых участках линии. Они встречаются наиболее часто; доля их в среднем составляет 80-90 % общего числа опор ВЛ. Провода к ним кре-пят с помощью поддерживающих (подвесных) гирлянд изоляторов или шты-ревых изоляторов. Промежуточные опоры в нормальном режиме испытыва-ют нагрузку в основном от собственного веса проводов, тросов и изоляторов, подвесные гирлянды изоляторов свисают вертикально.

Анкерные опоры устанавливают в местах жесткого крепления прово-дов; они делятся на концевые, угловые, промежуточные и специальные. Ан-керные опоры, рассчитанные на продольные и поперечные составляющие тяжения проводов (натяжные гирлянды изоляторов расположены горизон-тально), испытывают наибольшие нагрузки, поэтому они значительно слож-нее и дороже промежуточных; число их на каждой линии должно быть ми-нимальным.

В частности, концевые и угловые опоры, устанавливаемые в конце или на повороте линии, испытывают постоянное тяжение проводов и тросов: одно-стороннее или по равнодействующей угла поворота; промежуточные анкер-ные, устанавливаемые на протяженных прямых участках, также рассчитыва-ются на одностороннее тяжение, которое может возникнуть при обрыве час-ти проводов в примыкающем к опоре пролете.

Специальные опоры бывают следующих типов: переходные - для больших пролетов пересечения рек, ущелий; ответвительные - для выполне-ния ответвлений от основной линии; транспозиционные - для изменения по-рядка расположения проводов на опоре.

Наряду с назначением (типом) конструкция опоры определяется коли-чеством цепей ВЛ и взаимным расположением проводов (фаз). Опоры (и ли-нии) выполняются в одно- или двухцепном варианте, при этом провода на опорах могут размещаться треугольником, горизонтально, обратной «елкой» и шестиугольником или «бочкой» (рис. 3.2 ).

Несимметричное расположение фазных проводов по отношению друг к другу (рис. 3.2) обусловливает неодинаковость индуктивностей и емкостей разных фаз. Для обеспечения симметрии трехфазной системы и выравнива-ния по фазам реактивных параметров на длинных линиях (более 100 км) на-пряжением 110 кВ и выше осуществляют перестановку (транспозицию) про-водов в цепи с помощью соответствующих опор.

При полном цикле транспозиции каждый провод (фаза) равномерно по длине линии занимает последовательно положение всех трех фаз на опоре (рис. 3.3).

Деревянные опоры (рис. 3.4 ) изготавливают из сосны или лиственницы и применяют на линиях напряжением до 110 кВ в лесных районах, в настоящее время все меньше. Основными элементами опор являются пасынки (пристав-ки) 1, стойки 2, траверсы 3, раскосы 4, подтраверсные брусья 6 и ригели 5. Опоры просты в изготовлении, дешевы, удобны в транспортировке. Основ-ной их недостаток - недолговечность из-за гниения древесины, несмотря на ее обработку антисептиком. Применение железобетонных пасынков (приста-вок) увеличивает срок службы опор до 20-25 лет.

Железобетонные опоры (рис. 3.5) наиболее широко применяются на линиях напряжением до 750 кВ. Они могут быть свободностоящие (проме-жуточные) и с оттяжками (анкерные). Железобетонные опоры долговечнее деревянных, просты в эксплуатации, дешевле металлических.

Металлические (стальные) опоры (рис. 3.6 ) применяют на линиях на-пряжением 35 кВ и выше. К основным элементам относятся стойки 1, тра-версы 2, тросостойки 3, оттяжки 4 и фундамент 5. Они прочны и надежны, но достаточно металлоемкие, занимают большую площадь, требуют для уста-новки сооружения специальных железобетонных фундаментов и в процессе эксплуатации должны окрашиваться для предохранения от коррозии .

Металлические опоры используются в тех случаях, когда технически сложно и неэкономично сооружать ВЛ на деревянных и железобетонных опорах (переходы через реки, ущелья, выполнение отпаек от ВЛ и т. п.).

В России разработали унифицированные металлические и железобе-тонные опоры различных типов для ВЛ всех напряжений, что позволяет се-рийно их производить, ускорять и удешевлять сооружение линий.

Провода воздушных линий .

Провода предназначены для передачи электроэнергии. Наряду с хорошей электропроводностью (возможно мень-шим электрическим сопротивлением), достаточной механической прочно-стью и устойчивостью против коррозии должны удовлетворять условиям экономичности. С этой целью применяют провода из наиболее дешевых ме-таллов - алюминия, стали, специальных сплавов алюминия. Хотя медь об-ладает наибольшей проводимостью, медные провода из-за значительной стоимости и потребности для других целей в новых линиях не используют-ся.

Их использование допускается в контактных сетях, в сетях горных предприятий.

На ВЛ применяются преимущественно неизолированные (голые) про-вода. По конструктивному исполнению провода могут быть одно- и много-проволочными, полыми (рис. 3.7 ). Однопроволочные, преимущественно стальные провода, используются ограниченно в низковольтных сетях. Для придания гибкости и большей механической прочности провода изготавли-вают многопроволочными из одного металла (алюминия или стали) и из двух металлов (комбинированные) - алюминия и стали. Сталь в проводе увеличи-вает механическую прочность.

Исходя из условий механической прочности, алюминиевые провода марок А и АКП (рис. 3.7) применяют на ВЛ напряжением до 35 кВ. Воздушные линии 6-35 кВ могут также выполняться сталеалюминиевыми проводами, а выше 35 кВ линии монтируются исключительно сталеалюминиевыми проводами.

Сталеалюминиевые провода имеют вокруг стального сердечника повивы из алюминиевых проволок. Площадь сечения стальной части обычно в 4-8 раз меньше алюминиевой, но сталь воспринимает около 30-40 % всей механической нагрузки; такие провода используются на линиях с длинными пролетами и на территориях с более тяжелыми климатическими условиями (с большей толщиной стенки гололеда).

В марке сталеалюминиевых прово-дов указывается сечение алюминиевой и стальной части, например, АС 70/11, а также данные об антикоррозийной защите, например, АСКС, АСКП - такие же провода, как и АС, но с заполнителем сердечника (С) или всего провода (П) антикоррозийной смазкой; АСК - такой же провод, как и АС, но с сердечником, покрытым полиэтиленовой плёнкой. Провода с антикорро-зийной защитой применяются в районах, где воздух загрязнен примесями, действующими разрушающе на алюминий и сталь. Площади сечения прово-дов нормированы Государственным стандартом.

Повышение диаметров проводов при неизменности расходования про-водникового материала может осуществляться применением проводов с на-полнителем из диэлектрика и полых проводов (рис. 3.7, г, д). Такое использо-вание снижает потери на коронирование (см. п. 2.2). Полые провода исполь-зуются главным образом для ошиновки распределительных устройств 220 кВ и выше.

Провода из сплавов алюминия (АН - нетермообработанные, АЖ - термообработанные) имеют большую по сравнению с алюминиевыми меха-ническую прочность и практически такую же электрическую проводимость. Они используются на ВЛ напряжением выше 1 кВ в районах с толщиной стенки гололеда до 20 мм.

Всё большее применение находят ВЛ с самонесущими изолированны-ми проводами напряжением 0,38-10 кВ. В линиях напряжением 380/220 В провода состоят из несущего неизолированного провода, являющегося нуле-вым, трёх изолированных фазных проводов, одного изолированного провода (любой фазы) наружного освещения. Фазные изолированные провода навиты вокруг несущего нулевого провода (рис. 3.8).

Несущий провод является сталеалюминиевым, а фазные - алюминие-выми. Последние покрыты светостойким термостабилизированным (сшитым) полиэтиленом (провод типа АПВ). К преимуществам ВЛ с изолированными проводами перед линиями с голыми проводами можно отнести отсутствие изоляторов на опорах, максимальное использование высоты опоры для под-вески проводов; нет необходимости в обрезке деревьев в зоне прохождения линии.

Грозозащитные тросы наряду с искровыми промежутками, разрядни-ками, ограничителями напряжений и устройствами заземления служат для защиты линии от атмосферных перенапряжений (грозовых разрядов). Тросы подвешивают над фазными проводами (рис. 3.5 ) на ВЛ напряжением 35 кВ и выше в зависимости от района по грозовой деятельности и материала опор, что регламентируется Правилами устройств электроустановок (ПУЭ).

В каче-стве грозозащитных проводов обычно применяют стальные оцинкованные канаты марок С 35, С 50 и С 70, а при использовании тросов для высокочас-тотной связи - сталеалюминевые провода. Крепление тросов на всех опорах ВЛ напряжением 220-750 кВ должно быть выполнено при помощи изолято-ра, шунтированного искровым промежутком. На линиях 35-110 кВ крепле-ние тросов к металлическим и железобетонным промежуточным опорам осуществляется без изоляции троса.

Изоляторы воздушных линий. Изоляторы предназначены для изоля-ции и крепления проводов. Изготавливаются они из фарфора и закаленного стекла - материалов, обладающих высокой механической и электрической прочностью и стойкостью к атмосферным воздействиям. Существенным дос-тоинством стеклянных изоляторов является то, что при повреждении зака-ленное стекло рассыпается. Это облегчает нахождение поврежденных изоля-торов на линии.

По конструкции, способу закрепления на опоре изоляторы разделяют на штыревые и подвесные. Штыревые изоляторы (рис. 3.9, а, б ) применяются для линий напряжением до 10 кВ и редко (для малых сечений) 35 кВ. Они крепятся к опорам при помощи крюков или штырей. Подвесные изоляторы (рис. 3.9, в) используются на ВЛ напряжением 35 кВ и выше. Они состоят из фарфоровой или стеклянной изолирующей части 1, шапки из ковкого чугуна 2, металлического стержня 3 и цементной связки 4.

Изоляторы собираются в гирлянды (рис. 3.9, г): поддерживающие на промежуточных опорах и натяж-ные - на анкерных. Количество изоляторов в гирлянде зависит от напряже-ния, типа и материала опор, загрязнённости атмосферы. Например, в линии 35 кВ - 3-4 изолятора, 220 кВ - 12-14; на линиях с деревянными опорами, обладающих повышенной грозоупорностью, количество изоляторов в гир-лянде на один меньше, чем на линиях с металлическими опорами; в натяж-ных гирляндах, работающих в наиболее тяжелых условиях, устанавливают на 1-2 изолятора больше, чем в поддерживающих.

Разработаны и проходят опытную промышленную проверку изоляторы с использованием полимерных материалов. Они представляют собой стерж-невой элемент из стеклопластика, защищённый покрытием с ребрами из фто-ропласта или кремнийорганической резины. Стержневые изоляторы по срав-нению с подвесными имеют меньший вес и стоимость, более высокую меха-ническую прочность, чем из закалённого стекла. Основная проблема - обес-печить возможность их длительной (более 30 лет) работы.

Линейная арматура предназначена для закрепления проводов к изоля-торам и тросов к опорам и содержит следующие основные элементы: зажи-мы, соединители, дистанционные распорки и др. (рис. 3.10).

Поддерживающие зажимы применяют для подвески и закрепления проводов ВЛ на промежуточных опорах с ограниченной жёсткостью заделки (рис. 3.10, а). На анкерных опорах для жёсткого крепления проводов исполь-зуют натяжные гирлянды и натяжные зажимы - натяжные и клиновые (рис. 3.10, б, в). Сцепная арматура (серьги, ушки, скобы, коромысла) предна-значена для подвески гирлянд на опорах. Поддерживающая гирлянда (рис. 3.10, г) закрепляется на траверсе промежуточной опоры с помощью серьги 1, вставляемой другой стороной в шапку верхнего подвесного изоля-тора 2. Ушко 3 используется для прикрепления к нижнему изолятору гирлян-ды поддерживающего зажима 4.

Дистанционные распорки (рис. 3.10, д), устанавливаемые в пролётах линий 330 кВ и выше с расщепленными фазами, предотвращают схлестывание, соударения и закручивание отдельных проводов фаз. Соединители при-меняются для соединения отдельных участков провода с помощью овальных или прессующих соединителей (рис. 3.10, е, ж ). В овальных соединителях провода либо скручиваются, либо обжимаются; в прессуемых соединителях, применяемых для соединения сталеалюминиевых проводов больших сече-ний, стальная и алюминиевые части опрессовываются отдельно.

Результатом развития техники передачи ЭЭ на дальние расстояния яв-ляются различные варианты компактных ЛЭП, характеризующиеся меньшим расстоянием между фазами и, как следствие, меньшими индуктивными со-противлениями и шириной трассы линии (рис. 3.11). При использовании опор «охватывающего типа» (рис. 3.11, а) уменьшение расстояния достигает-ся за счет расположения всех фазных расщепленных конструкций внутри «охватывающего портала», или по одну сторону от стойки опор (рис. 3.11, б). Сближение фаз обеспечивается с помощью междуфазных изоляционных рас-порок. Предложены различные варианты компактных линий с нетрадицион-ными схемами расположения проводов расщепленных фаз (рис. 3.11, в-и).

Кроме уменьшения ширины трассы на единицу передаваемой мощно-сти, компактные линии могут быть созданы для передачи повышенных мощ-ностей (до 8-10 ГВт); такие линии вызывают меньшую напряженность элек-трического поля на уровне земли и обладают рядом других технических дос-тоинств.

К компактным линиям относятся также управляемые самокомпенсирующиеся линии и управляемые линии с нетрадиционной конфигурацией расщепленных фаз. Они представляют собой двухцепные линии, в которых попарно сдвинуты одноименные фазы разных цепей. При этом к цепям под-водятся напряжения, сдвинутые на определенный угол. За счет режимного изменения с помощью специальных устройств угла фазового сдвига осуще-ствляется управление параметрами линий.

Линии электропередачи

Линия электропередачи (ЛЭП) - один из компонентов электрической сети , система энергетического оборудования, предназначенная для передачи электроэнергии .

Согласно МПТЭЭП (Межотраслевые правила технической эксплуатации электроустановок потребителей) Линия электропередачи - Электрическая линия, выходящая за пределы электростанции или подстанции и предназначенная для передачи электрической энергии.

Различают воздушные и кабельные линии электропередачи .

По ЛЭП также передают информацию при помощи высокочастотных сигналов, по оценкам в России используется порядка 60 тыс. ВЧ-каналов по ЛЭП. Используются они для диспетчерского управления, передачи телеметрических данных, сигналов релейной защиты и противоаварийной автоматики.

Воздушные линии электропередачи

Воздушная линия электропередачи (ВЛ) - устройство, предназначенное для передачи или распределения электрической энергии по проводам, находящимся на открытом воздухе и прикреплённым с помощью траверс (кронштейнов), изоляторов и арматуры к опорам или другим сооружениям (мостам , путепроводам).

Состав ВЛ

  • Секционирующие устройства
  • Волоконно-оптические линии связи (в виде отдельных самонесущих кабелей, либо встроенные в грозозащитный трос, силовой провод)
  • Вспомогательное оборудование для нужд эксплуатации (аппаратура высокочастотной связи, ёмкостного отбора мощности и др.)

Документы, регулирующие ВЛ

Классификация ВЛ

По роду тока

  • ВЛ переменного тока
  • ВЛ постоянного тока

В основном, ВЛ служат для передачи переменного тока и лишь в отдельных случаях (напр., для связи энергосистем, питания контактной сети и др.) используют линии постоянного тока.

Для ВЛ переменного тока принята следующая шкала классов напряжений: переменное - 0.4, 6, 10, (20), 35, 110, 150, 220, 330, 400 (Выборгская ПС - Финляндия), 500 , 750 и 1150 кВ; постоянное - 400 кВ.

По назначению

  • сверхдальние ВЛ напряжением 500 кВ и выше (предназначены для связи отдельных энергосистем)
  • магистральные ВЛ напряжением 220 и 330 кВ (предназначены для передачи энергии от мощных электростанций , а также для связи энергосистем и объединения электростанций внутри энергосистем - к примеру, соединяют электростанции с распределительными пунктами)
  • распределительные ВЛ напряжением 35, 110 и 150 кВ (предназначены для электроснабжения предприятий и населённых пунктов крупных районов - соединяют распределительные пункты с потребителями)
  • ВЛ 20 кВ и ниже, подводящие электроэнергию к потребителям

По напряжению

  • ВЛ до 1 кВ (ВЛ низшего класса напряжений)
  • ВЛ выше 1 кВ
    • ВЛ 1-35 кВ (ВЛ среднего класса напряжений)
    • ВЛ 110-220 кВ (ВЛ высокого класса напряжений)
    • ВЛ 330-500 кВ (ВЛ сверхвысокого класса напряжений)
    • ВЛ 750 кВ и выше (ВЛ ультравысокого класса напряжений)

Это группы существенно различаются в основном требованиями в части расчётных условий и конструкций.

По режиму работы нейтралей в электроустановках

  • Трехфазные сети с незаземленными (изолированными) нейтралями (нейтраль не присоединена к заземляющему устройству или присоединена к нему через аппараты с большим сопротивлением). В России такой режим нейтрали используется в сетях напряжением 3-35кВ с малыми токами однофазных замыканий на землю.
  • Трехфазные сети с резонансно-заземлёнными (компенсированными) нейтралями (нейтральная шина присоединена к заземлению через индуктивность). В России используется в сетях напряжением 3-35кВ с большими токами однофазных замыканий на землю.
  • Трехфазные сети с эффективно-заземленными нейтралями (сети высокого и сверхвысокого напряжения, нейтрали которых соединены с землей непосредственно или через небольшое активное сопротивление). В России это сети напряжением 110, 150 и частично 220кВ, т.е. сети в которых применяются трансформаторы, а не автотрансформаторы, требующие обязательного глухого заземления нейтрали по режиму работы.
  • Сети с глухозаземлённой нейтралью (нейтраль трансформатора или генератора присоединяется к заземляющему устройству непосредственно или через малое сопротивление). К ним относятся сети напряжением менее 1кВ, а так же сети напряжением 220кВ и выше.

По режиму работы в зависимости от механического состояния

  • ВЛ нормального режима работы (провода и тросы не оборваны)
  • ВЛ аварийного режима работы (при полном или частичном обрыве проводов и тросов)
  • ВЛ монтажного режима работы (во время монтажа опор, проводов и тросов)

Основные элементы ВЛ

  • Трасса - положение оси ВЛ на земной поверхности.
  • Пикеты (ПК) - отрезки, на которые разбита трасса, длина ПК зависит от номинального напряжения ВЛ и типа местности.
  • Нулевой пикетный знак обозначает начало трассы.
  • Центровой знак обозначает центр расположения опоры в натуре на трассе строящейся ВЛ.
  • Производственный пикетаж - установка пикетных и центровых знаков на трассе в соответствие с ведомостью расстановки опор.
  • Фундамент опоры - конструкция, заделанная в грунт или опирающаяся на него и передающая ему нагрузки от опоры, изоляторов, проводов (тросов) и от внешних воздействий (гололёда, ветра).
  • Основание фундамента - грунт нижней части котлована, воспринимающий нагрузку.
  • Пролёт (длина пролёта) - расстояние между центрами двух опор, на которых подвешены провода. Различают промежуточный (между двумя соседними промежуточными опорами) и анкерный (между анкерными опорами) пролёты . Переходный пролёт - пролёт, пересекающий какое-либо сооружение или естественное препятствие (реку, овраг).
  • Угол поворота линии - угол α между направлениями трассы ВЛ в смежных пролётах (до и после поворота).
  • Стрела провеса - вертикальное расстояние между низшей точкой провода в пролёте и прямой, соединяющей точки его крепления на опорах.
  • Габарит провода - вертикальное расстояние от низшей точки провода в пролёте до пересекаемых инженерных сооружений, поверхности земли или воды.
  • Шлейф (петля ) - отрезок провода, соединяющий на анкерной опоре натянутые провода соседних анкерных пролётов.

Кабельные линии электропередачи

Кабельная линия электропередачи (КЛ) -называется линия для передачи электроэнергии или отдельных импульсов ее, состоящая из одного или нескольких параллельных кабелей с соединительными, стопорными и концевыми муфтами (заделками) и крепежными деталями, а для маслонаполненных линий, кроме того, с подпитывающими аппаратами и системой сигнализации давления масла.

По классификации кабельные линии аналогичны воздушным линиям

Кабельные линии делят по условиям прохождения

  • Подземные
  • По сооружениям
  • Подводные

к кабельным сооружениям относятся

  • Кабельный туннель - закрытое сооружение (коридор) с расположенными в нем опорными конструкциями для размещения на них кабелей и кабельных муфт, со свободным проходом по всей длине, позволяющим производить прокладку кабелей, ремонты и осмотры кабельных линий.
  • Кабельный канал - закрытое и заглубленное (частично или полностью) в грунт, пол, перекрытие и т. п. непроходное сооружение, предназначенное для размещения в нем кабелей, укладку, осмотр и ремонт которых возможно производить лишь при снятом перекрытии.
  • Кабельная шахта - вертикальное кабельное сооружение (как правило, прямоугольного сечения), у которого высота в несколько раз больше стороны сечения, снабженное скобами или лестницей для передвижения вдоль него людей (проходные шахты) или съемной полностью или частично стенкой (непроходные шахты).
  • Кабельный этаж - часть здания, ограниченная полом и перекрытием или покрытием, с расстоянием между полом и выступающими частями перекрытия или покрытия не менее 1,8 м.
  • Двойной пол - полость, ограниченная стенами помещения, междуэтажным перекрытием и полом помещения со съемными плитами (на всей или части площади).
  • Кабельный блок - кабельное сооружение с трубами (каналами) для прокладки в них кабелей с относящимися к нему колодцами.
  • Кабельная камера - подземное кабельное сооружение, закрываемое глухой съемной бетонной плитой, предназначенное для укладки кабельных муфт или для протяжки кабелей в блоки. Камера, имеющая люк для входа в нее, называется кабельным колодцем.
  • Кабельная эстакада - надземное или наземное открытое горизонтальное или наклонное протяженное кабельное сооружение. Кабельная эстакада может быть проходной или непроходной.
  • Кабельная галерея - надземное или наземное закрытое полностью или частично (например, без боковых стен) горизонтальное или наклонное протяженное проходное кабельное сооружение.

По типу изоляции

Изоляция кабельных линий делится на два основных типа:

  • жидкостная
    • кабельным нефтяным маслом
  • твёрдая
    • бумажно-маслянная
    • поливинилхлоридная (ПВХ)
    • резино-бумажная (RIP)
    • сшитый полиэтилен (XLPE)
    • этилен-пропиленовая резина (EPR)

Здесь не указана изоляция газообразными веществами и некоторые виды жидкостной и твёрдой изоляции из-за их относительно редкого применения в момент написания статьи.

Потери в ЛЭП

Потери электроэнергии в проводах зависят от силы тока , поэтому при передаче ее на дальние расстояния, напряжение многократно повышают (во столько же раз уменьшая силу тока) с помощью трансформатора , что при передаче той же мощности позволяет значительно снизить потери. Однако с ростом напряжения начинают происходить различного рода разрядные явления.

Другой важной величиной, влияющей на экономичность ЛЭП, является cos(f) - величина, характеризующая отношение активной и реактивной мощности.

В воздушных линиях сверхвысокого напряжения присутствуют потери активной мощности на корону (коронный разряд). Эти потери зависят во многом от погодных условий (в сухую погоду потери меньше, соответственно в дождь, изморось, снег эти потери возрастают) и расщепления провода в фазах линии. Потери на корону для линий различных напряжений имеют свои значения (для линии ВЛ 500кВ среднегодовые потери на корону составляют около ΔР=9,0 -11,0 кВт/км). Так как коронный разряд зависит от напряжённости на поверхности провода, то для уменьшения этой напряжённости в воздушных линиях свервысокого напряжения применяют расщепление фаз. То есть в место одного провода применяют от трёх и более проводов в фазе. Распологаются эти провода на равном расстоянии друг от друга. Получается эквивалентный радиус расщеплённой фазы, этим уменьшается напряжённость на отдельном проводе, что в свою очередь уменьшает потери на корону.

- (ВЛ) – линия электропередачи, провода которой поддерживаются над землей с помощью опор, изоляторов. [ГОСТ 24291 90] Рубрика термина: Энергетическое оборудование Рубрики энциклопедии: Абразивное оборудование, Абразивы, Автодороги … Энциклопедия терминов, определений и пояснений строительных материалов

ВОЗДУШНАЯ ЛИНИЯ ЭЛЕКТРОПЕРЕДАЧИ - (линия электропередачи, ЛЭП сооружение, предназначенное для передачи на расстояние электрической энергии от электростанций к потребителям; размещена на открытом воздухе и выполнена обычно неизолированными проводами, которые подвешены с помощью… … Большая политехническая энциклопедия

Воздушная линия электропередачи - (ВЛ) устройство для передачи и распределения электроэнергии по проводам, расположенным на открытом воздухе и прикрепленным при помощи изоляторов и арматуры к опорам или кронштейнам, стойкам на инженерных сооружениях (мостах, путепроводах и т.п.) … Официальная терминология

воздушная линия электропередачи - 51 воздушная линия электропередачи; ВЛ Линия электропередачи, провода которой поддерживаются над землей с помощью опор, изоляторов 601 03 04 de Freileitung en overhead line fr ligne aérienne

Кабельная линия (КЛ) - линия для передачи электроэнергии, состоящая из одно­го или нескольких параллельных кабелей, выполненная каким-либо способом прокладки (рис. 1.29). Кабельные линии прокладывают там, где строительство ВЛ невозможно из-за стесненной территории, неприемлемо по условиям техники безопасности, нецелесооб­разно по экономическим, архитектурно-планировочным показателям и другими требо­ваниям. Наибольшее применение КЛ нашли при передаче и распределении ЭЭ на про­мышленных предприятиях и в городах (системы внутреннего электроснабжения) при передаче ЭЭ через большие водные пространства

Достоинства и преимущества кабельных линий по сравнению с воздушными: неподверженность атмосферным воз­действиям, скрытность трассы и недоступность для посторонних лиц, меньшая повреж­даемость, компактность линии и возможность широкого развития электроснабжения по­требителей городских и промышленных районов. Однако КЛ значительно дороже воздушных того же напряжения (в среднем в 2-3 раза для линий 6-35 кВ и в 5-6 раз для линий 110 кВ и выше), сложнее при сооружении и эксплуатации.

Рис. 1.29. Способы прокладки кабелей и кабельные сооружения: а - земляная траншея; б-_коллектора;в-туннель; г-канал; д - эстакада; е - блок

В состав КЛ входят: кабель, оборудования для соединения и секционирования участков кабеля и присоединения концов кабелей к аппаратуре и шинам РУ (кабельная арматура – главным образом различные муфты), строитель­ные конструкции, элементы крепления, а также аппаратуры подпитки маслом или газом (для масло- и газонаполненных кабелей).

Классификация кабельных линий в основном соответствует классификации входящих в нее кабелей. Основными признаками являются:

Род тока;

Номинальное напряжение;

Число токоведущих элементов;

Электроизоляционный материал;

Характер пропитки и способ увеличения электрической прочности бумажной изоляции;

Материал оболочек.

(Данные признаки охватывают лишь кабели, работающие в условиях естественного охлаждения. Имеются кабели с форсированным охлаждением водой или маслом, а также криогенные кабели.)

Кабель - готовое заводское изделие, состоящее из изолированных токо-проводящих жил, заключенных в защитную герметичную оболочку и броню, пре­дохраняющие их от влаги, кислот и механических повреждений. Силовые кабели имеют от одной до четырех алюминиевых или медных жил сечением 1,5-2000 мм 2 . Жилы сечением до 16 мм 2 - однопроволочные, свыше - многопроволоч­ные. По форме сечения жилы круглые, сегментные или секторные.

Кабели напряжением до 1 кВ выполняются, как правило, четырехжильными, напряжением 6-35 кВ - трехжильными, а напряжением 110-220 кВ - одножильными.



Защитные оболочки делаются из свинца, алюминия, резины и полихлорви­нила. В кабелях напряжением 35 кВ каждая жила дополнительно заключается в свинцовую оболочку, что создает более равномерное электрическое поле и улуч­шает отвод тепла. Выравнивание электрического поля у кабелей с пластмассовой изоляцией и оболочкой достигается экранированием каждой жилы полупроводя­щей бумагой.

В кабелях на напряжение 1-35 кВ для повышения электрической прочно­сти между изолированными жилами и оболочкой прокладывается слой поясной изоляции.

Броня кабеля, выполненная из стальных лент или стальных оцинкованных проволок, защищается от коррозии наружным покровом из кабельной пряжи, пропитанной битумом и покрытой меловым составом.

В кабелях напряжением 110кВ и выше для повышения электрической прочности бумажной изоляции их наполняют газом или маслом под избыточным давлением (газонаполненные и маслонаполненные кабели).

Кабельные линии высокого напряжения

Кабельные линии с вязкой пропиткой при напряжениях свыше 35 кВ не применяются. Это связано с тем, что в изоляции готового кабеля всегда остаются воздушные включения. Их наличие существенно снижает электрическую прочность изоляции. Воздушные включения, в зависимости от места их нахождения, подвергаются ионизации со всеми вытекающими отсюда последствиями, либо их отрицательная роль проявляется в связи с протеканием тепловых процессов. Кабель периодически подвергается нагреванию и охлаждению в связи с изменением передаваемой мощности. Увеличение и снижение объема кабеля приводит к увеличению воздушных включений, миграции их к токопроводящей жиле и последующему пробою.

Устранить указанные явления можно двумя способами:

Исключить воздушные включения;

Повысить давление в воздушных (газовых) включениях.

Первый способ используется в маслонаполненных кабелях (МНК) низкого давления, имеющих каналы для масла внутри жилы, второй – в МНК высокого давления, прокладываемых в стальных трубопроводах.

Маслонаполненные кабели низкого давления .

МНК низкого давления (до 0,05 МПа) выпускают одножильными, Они серийно изготавливаются на напряжение 110, 150 и 220 кВ и имеют медные жилы сечением 120-800 в свинцовых или алюминиевых оболочках.

В зависимости от условий прокладки – в земле (в траншеях), когда кабель не подвергается растягивающим условиям и защищен от механических повреждений; или под водой, в болотистой местности и там, где он подвергается растягивающим усилиям, - применяются различные тины маслонаполненного кабеля.

Маслонаполненные кабели высокого давления .

Маслонаполненные кабели (МНК) высокого давления изготовляются на напряжение 110, 220, 330, 380 и 500 Кв.

Жилы такого кабеля выпускают:

а) во временной свинцовой оболочке, предохраняющей изоляцию от увлажнения и повреждения при транспортировке и удаляемой при монтаже;

б) без оболочки. В этом случае жилы кабеля доставляются на трассу в герметичном контейнере, заполненном маслом.

При монтаже изолированные и экранированные медные жилы сечением 120-700 с наложенными на них полукруглыми проволоками скольжения затягиваются в стальные трубы. При = 500 кВ наружный диаметр трубы составляет 273 мм при толщине стенки 10 мм.

Для таких кабельных линий давление масла составляет 1,08 – 1,57 МПа. За счет высокого давления повышается электрическая прочность. Трубы являются хорошей защитой от механических повреждений.

Трубопроводы сваривают из отрезков длиной по 12 м. Компенсация изменения объема масла при изменении температуры и поддержание давления масла в трубопроводе осуществляется автоматически подпитывающим устройством, которое располагается на одном конце линии (при небольших длинах) или на обоих(при больших длинах).

Существуют также маслонаполненные кабели среднего давления, кабели с полимерными материалами в качестве изоляции и т.д.

В марке, обозначении кабеля указываются сведения о его конструкции, номинальное напряжение, количество и сечение жил. У четырехжильных кабелей напряжением до 1 кВ сечение четвертой («нулевой») жилы меньше, чем фазной. Например кабель ВПГ-1- 3x35+1x25 - кабель с тремя медными жилами сече­нием по 35 мм 2 и четвертой сечением 25 мм", полиэтиленовой (П) изоляцией на 1 кВ оболочкой из полихлорвинила (В), небронированный, без наружного покрова (Г)"_ для прокладки внутри помещений, в каналах, туннелях, при отсутствии ме­ханических воздействий на кабель; кабель АОСБ-35-3x70 - кабель с тремя алюминиевыми (А) жилами по 70 мм 2 , с изоляцией на 35 кВ, с отдельно освинцо­ванными (О) жилами, в свинцовой (С) оболочке, бронированный (Б) стальными лентами, с наружным защитным покровом - для прокладки в земляной траншее;

ОСБ-35__3x70 - такой же кабель, но с медными жилами.

Конструкции некоторых кабелей представлены на рис. 1.30. На рис. 1.30, а, б даны силовые кабели напряжением до 10 кВ.

Четырехжильный кабель напряжением 380 В (см. рис. 1.30, а) содержит элементы: 1 - токопроводящие фазные жилы; 2 - бумажная фазная и поясная изоляция; 3 - защитная оболочка; 4 - стальная броня; 5 - защитный покров; 6 - бумажный наполнитель; 7 - нулевая жила.

Трехжилъный кабель с бумажной изоляцией напряжением 10 кВ (рис. 1.30, б) содержит элементы: 1 - токоведущие жилы; 2 - фазная изоляция; 3 - общая поясная изоляция; 4 - защитная оболочка; 5 - подушка под броней; 6 - сталь­ная броня; 7 - защитный покров; 8 - заполнитель.

Трехжилъный кабель напряжением 35 кВ изображен на рис. 1.30, в. В него входят: 1 - круглые токопроводящие жилы; 2 - полупроводящие экраны; 3 - фазная изоляция; 4 - свинцовая оболочка; 5 - подушка; 6 - заполнитель из ка­бельной пряжи; 7 - стальная броня; 8 - защитный покров.

На рис. 1.30, г представлен маслонаполненный кабель среднего и высокого давления напряжением 110-220 кВ. Давление масла предотвращает появление воздуха и его ионизацию, устраняя одну из основных причин пробоя изоляции. Три однофазных кабеля помещены в стальную трубу 4, заполненную маслом 2 под избыточным давлением. Токоведущая жила 6состоит из медных круглых проволок и покрыта бумажной изоляцией 1 с вязкой пропиткой; поверх изоляции наложен экран 3 в виде медной перфорированной ленты и бронзовых проволок, предохраняющих изоляцию от механических повреждений при протягивании ка­беля в трубе. Снаружи стальная труба защищена покровом 5 .

Широко распространены кабели в полихлорвиниловой изоляции, произво­димые трех-, четырех- и пятижильными (1.30, е) или одножильными (рис. 1.30, д). Более подробные данные о различных типах и марках кабелей, областях их применения приведены в.

Кабели изготавливаются отрезками ограниченной длины в зависимости от напряжения и сечения. При прокладке отрезки соединяют посредством соедини­тельных муфт, герметизирующих места соединения. При этом концы жил кабелей освобождают от изоляции и заделывают в соединительные зажимы.

При прокладке в земле кабелей 0,38-10 кВ для защиты от коррозии и механи­ческих повреждений место соединения заключается в защитный чугунный разъемный кожух. Для кабелей 35 кВ используются также стальные или стеклопластиковые кожухи.

Надежность работы всей кабельной линии во многом определяется надежностью ее арматуры, т. е муфт различного типа и назначения.

Кабельные муфты высокого напряжения классифицируются по трем основным признакам.

По назначению муфты делятся на три основные группы –концевые, соединительные и стопорные, причем среди концевых выделяют открытые муфты и кабельные вводы в трансформаторы и высоковольтные аппараты, а среди соединительных – собственно соединительные, ответвительные и соединительно - разветвительные муфты.

По виду электрической изоляции муфты делятся на две группы: со слоистой и монолитной изоляцией. Слоистая изоляция выполняется путем намотки лент из кабельной бумаги, синтетической пленки или их композиций и заполняется той или иной средой (маслом, газом) под избыточным давлением или без него. Монолитная изоляция образуется методом экструзии или спекания изолирующих материалов в подогреваемых пресс-формах.

По роду тока различают муфты для кабелей переменного, постоянного и импульсного тока. Муфты кабелей переменного тока могут выполняться однофазными и трехфазными.

Конструкция муфт силовых кабелей высокого напряжения в первую очередь определяется типом кабеля, для которого они предназначены.

На концах кабелей применяют концевые муфты или концевые заделки.

Рис. 1.30. Силовые кабели: а - четырехжильный напряжением 380 В;

б- трсхжильный с бумажной изоляцией напряжением 10 кВ; в - трехжильный напряжением 35 кВ; г - маслонаполненный высокого давления; д - одножильный с пластмассовой изоляцией

На рис. 1.31а, показано соединение трехжильного низковольтного кабеля 2 в чугунной муфте 1. Концы кабеля фиксированы фарфоровой распоркой 3 и соединены зажимом 4. Муфты кабелей до 10 кВ с бумажной изоляцией заполняются битуминоз­ными составами, кабели 20-35 кВ - маслонаполненными . Для кабелей с пласт­массовой изоляцией применяют соединительные муфты из термоусаживаемых изоля­ционных трубок, число которых соответствует числу фаз, и одной термоусаживаемой трубки для нулевой жилы, усаживаемых в герметизированную муфту (рис. 1.31, б) .

Рис. 1.31. Соединительные муфты для трех- и четырехжильных кабелей напряже-- нием до 1 кВ: а - чугунная; б- из термоусаживаемых изоляционных трубок

На рис. 1.32, а приведена мастиконаполненая трехфазная муфта наружной установки с фарфоровыми изоляторами для кабелей напряжением 10 кВ. Для трехжильных кабелей с пластмассовой изоляцией применяется концевая муфта, представленная на рис. 1.32, б. Она состоит из термоусаживаемой перчатки 1, стойкой к воздейст­вию окружающей среды, и полупроводящих термоусаживаемых трубок 2, с по­мощью которых на конце трехжильного кабеля создаются три одножильных ка­беля. На отдельные жилы надеваются изоляционные термоусаживаемые трубки 3. На них монтируется нужное количество термоусаживаемых изоляторов 4.


Рис. 1.32. Концевые муфты для трехжильных кабелей напряжением 10 кВ: а - наружной установки с фарфоровыми изоляторами; б - наружной установки с пластмассовой изоляцией; в - внутренней установки с сухой разделкой

Для кабелей 10 кВ и ниже с пластмассовой изоляцией во внутренних поме­щениях применяют сухую разделку (рис. 1.32, е). Разделанные концы кабеля с изоляцией 3 обматывают липкой полихлорвиниловой лентой 5 и лакируют; концы кабеля герметизируют кабельной массой 7 и изоляционной перчаткой 1, перекры­вающей оболочку кабеля 2, концы перчатки и жилы дополнительно уплотняют и обматывают полихлорвиниловой лентой 4, 5, последнюю для предотвращения от­ставания и разматывания фиксируют бандажами из шпагата 6.

Способ прокладки кабелей определяется условиями трассы линии. Кабели про­кладываются в земляных траншеях, блоках, туннелях, кабельных туннелях, коллекто­рах, по кабельным эстакадам, а так же по перекрытиям зданий (рис. 1.29).

Наиболее часто на территории городов, промышленных предприятиях ка­бели прокладывают в земляных траншеях . Для предотвращения по­вреждений из-за прогибов на дне траншеи создают мягкую подушку из слоя про­сеянной земли или песка. При прокладке в одной траншее нескольких кабелей до 10 кВ расстояние по горизонтали между ними должно быть не менее 0,1 м, между кабелями 20-35 кВ - 0,25 м. Кабель засыпают небольшим слоем такого же грунта и закрывают кирпичом или бетонными плитами для защиты от механиче­ских повреждений. После этого кабельную траншею засыпают землей. В местах перехода через дороги и на вводах в здания кабель прокладывают в асбестоцементных или иных трубах. Это защищает кабель от вибраций и обеспечивает воз­можность ремонта без вскрытия полотна дороги. Прокладка в траншеях - наи­менее затратный способ кабельной канализации ЭЭ.

В местах прокладки большого количества кабелей агрессивный грунт и блуждаю­щие токи ограничивают возможность их прокладки в земле. Поэтому наряду с другими подземными коммуникациями используют специальные сооружения: коллекторы, тунне­ли, каналы, блоки и эстакады .

Коллектор (рис. 1.29, б) служит для совместного размеще­ния в нем разных подземных коммуникаций: кабельных силовых линий и связи, водопро­вода по городским магистралям и на территории крупных предприятий.

При большом числе параллельно прокладываемых кабелей, например, от здания мощной электростанции применяют прокладку в туннелях

(рис. 1.29, в). При этом улучшаются условия экс­плуатации, снижается площадь поверхности земли, необходимая для прокладки кабелей. Однако стоимость туннелей весьма велика. Туннель предназначен только для прокладки кабельных линий. Его сооружают под землей из сборного железобетона или канализаци­онных труб большого диаметра, емкость туннеля - от 20 до 50 кабелей.

При меньшем числе кабелей применяют кабельные каналы (рис. 1.29, г), за­крытые землей или выходящие на уровень поверхности земли.

Кабельные эстака­ды и галереи (рис. 1.29, д) используют для надземной прокладки кабелей. Этот вид кабельных сооружений широко применяют там, где непосредственно про­кладка силовых кабелей в земле является опасной из-за оползней, обвалов, вечной мерзлоты и т. п. В кабельных каналах, туннелях, коллекторах и по эстакадам ка­бели прокладываются по кабельным кронштейнам.

В крупных городах и на больших предприятиях кабели иногда проклады­ваются в блоках (рис. 1.29, е), представляющих асбестоцементные трубы, стыки, которые заделаны бетоном. Однако в них кабели плохо охлаждаются, что снижает их пропускную способность. Поэтому прокладывать кабели в блоках следует лишь при невозможности прокладки их в траншеях.

В зданиях, по стенам и перекрытиям большие потоки кабелей укладывают в металлические лотки и короба. Одиночные кабели могут прокладываться открыто по стенам и перекрытиям или скрыто: в трубах, в пустотелых плитах и других строительных частях зданий.