Антигены их свойства. Основные свойства и строение антигенов

Антигены их свойства. Основные свойства и строение антигенов
Антигены их свойства. Основные свойства и строение антигенов

1.1. ПОНЯТИЯ ИНФЕКЦИИ И ИНФЕКЦИОННОЙ БОЛЕЗНИ

Инфекция – сумма биологических реакций, которыми макроорганизм отвечает на внедрение микробного (инфекционного) агента, вызывающего нарушение постоянства внутренней среды (гомеостаза).

Аналогичные процессы, вызванные простейшими, называются инвазиями.

Сложный процесс взаимодействия между микроорганизмами и их продуктами, с одной стороны, клетками, тканями и органами человека и животных – с другой, характеризуется чрезвычайно широким разнообразием своего проявления. Патогенетические и клинические проявления этого взаимодействия между микроорганизмами и макроорганизмом обозначаются термином инфекционная болезнь (заболевание).

Другими словами, понятия «инфекционная болезнь» и «инфекция» абсолютно не равнозначны, заболевание – это только одно из проявлений инфекции. Хотя даже в специальной литературе в настоящее время термин «инфекция» достаточно широко употребляется для обозначения соответствующих инфекционных болезней. Например, в выражениях «кишечные инфекции», «воздушно–капельные инфекции. Инфекционные болезни по–прежнему наносят огромный ущерб различным биологическим видам.

За последние годы зарегистрировано 38 новых инфекций – так называемых эмерджентных болезней, в том числе ВИЧ, геморрагические лихорадки, «болезнь легионеров», вирусные гепатиты, прионные болезни; причем в 40% случаев это нозологические формы, ранее считавшиеся неинфекционными.

Особенности инфекционных болезней состоят в следующем:

  1. их этиологическим фактором является микробный агент;
  2. они передаются от больного к здоровому;
  3. оставляют после себя ту или иную степень невосприимчивости;
  4. характеризуются цикличностью течения;
  5. имеют ряд общих синдромов.

1.2. КЛИНИЧЕСКИЕ СТАДИИ ИНФЕКЦИОННОГО ЗАБОЛЕВАНИЯ

В соответствии с этими особенностями любое инфекционное заболевание имеет определенные клинические стадии (периоды) своего течения, выраженные в той или иной степени:

  • инкубационный период – период от момента проникновения инфекционного агента в организм человека до появления первых предвестников заболевания. Возбудитель в этот период обычно не выделяется в окружающую среду, и больной не представляет эпидемиологической опасности для окружающих;
  • продромальный период – проявление первых неспецифических симптомов заболевания, характерных для общей интоксикации макроорганизма продуктами жизнедеятельности микроорганизмов и возможным действием бактериальных эндотоксинов, освобождающихся при гибели возбудителя; они также не выделяются в окружающую среду;

    Период разгара заболевания – проявление специфических симптомов заболевания. При наличии в этом периоде развития заболевания характерного симптомокомплекса клиницисты называют такое проявление заболевания манифестной инфекцией, а в тех случаях, когда заболевание в этот период протекает без выраженных симптомов, – бессимптомной инфекцией. Этот период развития инфекционного заболевания, как правило, сопровождается выделением возбудителя из организма, вследствие чего больной представляет эпидемиологическую опасность для окружающих; данные состояния характеризуются периодом исходов. В этот период возможны:

  • рецидив заболевания – возврат клинических проявлений болезни без повторного заражения за счет оставшихся в организме возбудителей;
  • суперинфекция – инфицирование макроорганизма тем же возбудителем до выздоровления. Если это происходит после выздоровления, то будет называться реинфекцией, так как возникает в результате нового заражения тем же возбудителем (как это часто бывает при гриппе, дизентерии, гонорее);
  • бактерионосительство, или, вернее, микробоносительство, – носительство возбудителя какого–либо инфекционного заболевания без клинических проявлений;
  • полное выздоровление (реконвалесценция) – в этот период возбудители также выделяются из организма человека в больших количествах, причем пути выделения зависят от локализации инфекционного процесса. Например, при респираторной инфекции – из носоглотки и ротовой полости со слюной и слизью; при кишечных инфекциях – с фекалиями и мочой, при гнойно–воспалительных заболеваниях – с гноем;
  • летальный исход. При этом необходимо помнить, что трупы инфекционных больных подлежат обязательной дезинфекции, так как представляют собой определенную эпидемиологическую опасность из–за высокого содержания в них микробного агента.

В учении об инфекции существует также понятие персистентности (инфицированности): микроорганизмы попадают в организм животного и могут существовать в нем, не проявляя себя достаточно долгое время.

Это происходит очень часто с возбудителем туберкулеза.

Отличие бактерионосительства от персистениии:

  • при носительстве животное выделяет возбудителя в окружающую среду и является опасным для окружающих;
  • при персистенции инфицированные животные в окружающую среду микроорганизм не выделяет, следовательно, не опасны для окружающих в эпидемиологическом отношении.

Кроме перечисленных терминов, существует еще понятие «инфекционный процесс» – это ответная реакция организма на проникновение и циркуляцию в нем микробного агента.

Из определения понятия «инфекция» становятся очевидными и факторы, необходимые для ее возникновения и развития:

– микроорганизм–возбудитель;

– восприимчивый макроорганизм;

– внешняя среда, в которой они взаимодействуют.

1.3. СВОЙСТВА АНТИГЕНОВ

Иммунный ответ – это сложная многокомпонентная, кооперативная реакция иммунной системы организма, индуцированная антигеном и направленная на его элиминацию. Явление иммунного ответа лежит в основе иммунитета.

Иммунный ответ зависит от:

  1. антигена – свойства, состав, молекулярная масса, доза, кратность попадания, длительность контакта);
  2. состояния организма (иммунологическая реактивность);
  3. условий внешней среды.

Антигены

Первоначально термин антиген (от англ. Antibodi generator) применяли для обозначения любой молекулы, индуцирующей образование В–клетками специфических антител. Однако теперь этот термин имеет более широкий смысл, обозначая любую молекулу, которую могут специфически распознавать элементы системы приобретенного иммунитета, т.е. В–клетки или Т–клетки, либо и те и другие.

Антиген – это инициатор и движущая сила всех реакций приобретенного иммунитета. Иммунная система возникла для распознавания и разрушения чужеродных агентов, а также устранения источника их образования – бактерий, инфицированных вирусом клеток и т.п. Когда антиген элиминирован, иммунный ответ прекращается.

Антигены – вещества различного происхождения, несущие признаки генетической чужеродности и вызывающие развитие иммунных реакций (гуморальных, клеточных, состояние иммунной толерантности, индуцирование иммунной памяти).

Свойства антигена определяются комплексом признаков: иммуногенность, антигенность, специфичность.

Иммуногенность – способность антигена индуцировать в организме иммунный ответ.

Антигенность – способность антигена взаимодействовать только с гомологичными антителами и лимфоцитами определенного клона.

Специфичность – структурные особенности, отличающие один антиген от другого.

Способность вызывать развитие иммунного ответа и определять его специфичность обладает фрагмент молекулы антигена – антигенная детерминанта (эпитоп), избирательно реагирующая с антигенраспознающими рецепторами и антителами. Молекула антигена может иметь несколько эпитопов, то есть быть поливалентной. Чем сложнее молекула антигена и чем больше у нее эпитопов, тем больше вероятность развития иммунной ответа.

Иммуногены или полные антигены – это вещества, вызывающие полноценный иммунный ответ и обладающие свойствами: иммуногенностью, антигенностью и специфичностью. Иммуногенами являются биополимеры – белки, их комплексы с углеводами (гликопротеиды), а также сложные полисахариды, липополисахариды с высокой молекулярной массой. Чем дальше от человека в эволюционном отношении отстоят организмы, тем большую иммуногенность проявляют их белки.

Гаптены – неполные антигены, относительно простые вещества, способные участвовать в иммунологических взаимодействиях, но не способные самостоятельно индуцировать иммунный ответ. Гаптены обладают свойствами антигенностью и специфичностью, но не обладают иммуногенностью.

Гаптены после присоединения к крупным, обычно белковым молекулам (носителям), могут приобретать свойства полного антигена.

Толерогены – антигены, способные подавлять иммунные реакции с развитием специфической неспособности отвечать на них.

Антигены – химические вещества, свободные, либо входящие в состав клеток, способные индуцировать иммунный ответ организма.

Полноценный антиген состоит из двух частей:

  • носитель (стабилизирующая часть) – 97 – 99% молекулы антигена; это, как правило, макромолекулы, инертные корпускулярные частицы;
  • детерминантная группа (эпитоп) – олигосахариды или олигопептиды, располагаются как правило на поверхности молекулы (эпи–); на одном носителе может быть несколько эпитопов, в связи с этим вводят понятие эпитопная плотность; детерминантная группа определяет специфичность антигена.

Свойства антигенов:

  • способны вызывать иммунный ответ;
  • способны к специфическому взаимодействию с различными молекулами и клетками (эритроцитами и т.д.).

Если реализованы оба указанных свойства, то такой антиген называют полноценным, если реализовано только второе свойство, то такой антиген называют неполноценным или гаптеном.

Гаптен может быть фиксирован на специальные носители – адьюванты. Механизм действия адьювантов:

  • создают депо антигенов;
  • укрупняют молекулу;
  • активируют лимфоидную ткань.

Классификация антигенов:

  1. по чужеродности
    • ксеноантигены (гетеро–) – не принадлежат особям данного вида;
    • аллоантигены (гомо–) – принадлежат особям данного вида;
    • аутоантигены – собственные антигены, например «забарьерные» клетки – сперматозоиды, клетки мозга; vсобственные клетки с иммунной активностью;
  2. по типу вызываемого иммунного ответа
    • иммуногены;
    • аллергены;
    • толерогены;
    • трансплантационные антигены;
  3. по связи с вилочковой железой (тимусом)
    • Т– зависимые;
    • Т– независимые.
  4. по локализации в микроорганизме
    • О – антигены – липополисахариды (ЛПС) клеточной стенки, термостабильные, высокоактивные, многообразны у разных микроорганизмов и даже у одного и того же;
    • Н – антиген – жгутиковый белок, термолабильный, достаточно активный, также разнообразен;
    • К – антигены – капсульные гликопротеиды, иммуногенность зависит от химической природы;
    • фимбриальные антигены;
    • протоплазматические антигены;
    • экзоаллергены;
  5. по специфичности для микроорганизма – носителя
    • видовые – у всех особей вида;
    • типовые – вариантные, у варов;
    • групповые – общие для микроорганизмов разных видов и родов;
    • стадийные – появляются на определенных стадиях развития;
    • штаммоспецифичные.

АНТИГЕНЫ МИКРООРГАНИЗМОВ

Большинство возбудителей инфекционных заболеваний человека, их структуры и токсины – полноценные антигены, вызывающие развитие иммунных реакций.

АНТИГЕНЫ БАКТЕРИЙ

По расположению в бактериальной клетке выделяют антигены:

Капсульный антиген – К Ag

Жгутиковый антиген – H Ag

Соматический антиген – O Ag

О–Аг большинства бактерий представлены термостабильным липополисахаридно–полипептидным комплексом; у грамотрицательных бактерий О–Аг представляет эндотоксин.

Н–Аг представлен термолабильным белком флагеллином.

К–Аг большинства бактерий имеют полисахаридную природу. По чувствительности к темпратуре К–Аг подразделяются на А–, В– и L–антигены. Наиболее термостабильными являются А–Аг, выдерживающие кипячение более 2 часов. В–Аг выдерживают нагревание при температуре 60°С в течение часа, а L–Аг разрушаются при нагревании до 60°С.

Для идентификации выделенных микроорганизмов в лаборатории применяют внутривидовую или внутриродовую дифференциацию микроорганизмов, основанную на различиях в антигенной структуре. При этом символически отображают антигенную структуру бактерий в виде антигенной формулы. Например, антигенную формулу одного из сероваров E. coli, вызывающую колиэнтериты у молодняка раннего возраста обозначают как О55:К5:Н21 (серовар, относящийся к серогруппе О55).

Рис. 1. Антигены бактерий: О–антиген (3 – клеточная стенка); Н–антиген (7 – жгутик); К–антиген (2 – капсула).

АНТИГЕНЫ ВИРУСОВ

В каждом вирионе любого вируса содержатся различные антигены. Одни из них являются вирусспецифическими. В состав других антигенов входят компоненты клетки хозяина (липиды, углеводы), которые включаются в его внешнюю оболочку. Антигены простых вирионов связаны с их нуклеокапсидами. По своему химическому составу они принадлежат к рибонуклеопротеидам или дезоксирибонуклеопротеидам, которые являются растворимыми соединениями и поэтому обозначаются как S–антигены (solutio – раствор). У сложноорганизованных вирионов одни антигенные компоненты связаны с нуклеокапсидами, другие – с гликопротеидами внешней оболочки. Многие простые и сложные вирионы содержат особые поверхностные V–антигены – гемагглютинин и фермент нейраминидазу.


Рис. 2. Антигены вирусов гриппа (поверхностные (V–антигены) и серцевинные (S–антигены)).


Рис. 3. Антигены вирусов гепатита В (поверхностные (V–антигены) и серцевинные (S–антигены)).

АНТИГЕНЫ ОРГАНИЗМА

Все ткани и клетки организма обладают антигенными свойствами. Одни антигены специфичны для всех млекопитающих, другие видоспецифичны для человека, третьи – для отдельных групп, их называют изоантигенами (например, антигены групп крови). К антигенам, свойственным только данному организму относятся антигены тканевой совместимости.

Изоантигены

Изоантигены или групповые антигены – это антигены, по которым отдельные индивидуумы или группы особей одного вида различаются между собой.

В эритроцитах, лейкоцитах, тромбоцитах, а также в плазме крови людей открыто несколько десятков изоантигенов.

Изоантигены, генетически связаны, объединены в группы, получившие название: система АВО, резус и др. В основе деления людей на группы по системе АВО лежит наличие или отсутствие на эритроцитах антигенов, обозначенных А и В. В соответствии с этим все люди подразделены на 4 группы. Группа I (О) – антигены отсутствуют, группа II (А) – в эритроцитах содержится антиген А, группа III (В) – эритроциты обладают антигеном В, группа IV (АВ) – эритроциты обладают обоими антигенами. Поскольку в окружающей среде имеются микроорганизмы, обладающие такими же антигенами (их называют перекресно–реагирующими), у человека имеются антитела к этим антигенам, но только к тем, которые у него отсутствуют. К собственным антигенам организм толерантен. При переливании крови или эритроцитов реципиенту, в крови которых содержатся антитела к соответствующему антигену, в сосудах происходит агглютинация перелитых несовместимых эритроцитов, что может вызвать шок и гибель реципиента.

У части людей эритроциты содержат еще особый антиген, получивший название резус–антигена (Rh). По наличию или отсутствию Rh–антигена люди разделяются на две группы – резус (Rh)–положительных и резус (Rh)–отрицательных. При переливании крови Rh–отрицательному реципиенту, если эритроциты донора содержат Rh–антиген, может развиваться гемолитическая желтуха.


Рис. 4. Рецепторы, встроенные в мембрану эритроцита, являются антигенами организма (изоантигены) в том числе антигены А и В системы АВО и резус фактор.

Антигены главного комплекса тканевой (гисто) совместимости.

Помимо антигенов, свойственных всем людям и групповых антигенов, каждый организм обладает уникальным набором антигенов, свойственных только ему самому. Эти антигены кодируются группой генов, находящихся у человека на 6 хромосоме, и называются антигенами главного комплекса тканевой совместимости и обозначаются МНС–антигены (англ. Major histocompatibility complex). МНС–антигены человека впервые были обнаружены на лейкоцитах и поэтому имеют другое название – HLA (Human leucocyte antigens). МНС–антигены относятся к гликопротеинам и содержатся на мембранах клеток организма, определяя его индивидуальные свойства и индуцируют трансплантационные реакции, за что они получили третье название – трансплантационные антигены. Кроме того, МНС–антигены играют обязательную роль в индукции иммунного ответа на любой антиген.

Белки I класса находятся на поверхности практически всех клеток организма. Антигены I класса обеспечивают представление антигенов цитотоксическим CD8+–лимфоцитам, а распознавание этого антигена антигенпредставляющим клеткам другого организма при трансплантации приводит к развитию трансплантационного иммунитета.

МНС–антигены II класса находятся преимущественно на антигенпредставляющих клетках – дендритных, макрофагах, В–лимфоцитах. Основная роль в иммуногенезе антигенов II класса – участие в представлении чужеродных антигенов Т–хелперным лимфоцитам.

Специфичность - это способность антигена взаимодействовать со строго определенными антителами или антигенными рецепторами лимфоцитов.

При этом взаимодействие происходит не со всей поверхностью антигена, а только с ее небольшим участком, который получил название «антигенная детерминанта» или «эпитоп». Одна молекула антигена может иметь от нескольких единиц до нескольких сотен эпитопов разной специфичности. Количество эпитопов определяет валентность антигена. Например: яичный альбумин (М 42 000) имеет 5 эпитопов, т. е. 5-валентен, белок тиреоглобулин (М 680 000) - 40-валентен.

В молекулах белков эпитоп (антигенная детерминанта) образуется совокупностью аминокислотных остатков. Размер антигенной детерминанты белков может включать от 5 - 7 до 20 аминокислотных остатков. Эпитопы, которые распознаются антигенными рецепторами В- и Т-лимфоцитов, имеют свои особенности.

В-клеточные эпитопы конформационного типа (образованы аминокислотными остатками из различных частей белковой молекулы, но сближенные в пространственной конфигурации белковой глобулы) находятся на внешней поверхности антигена, образуя петли и выступы. Обычно число аминокислот или сахаров в эпитопе составляет от 6 до 8. Антигенраспознающие рецепторы В-клеток распознают нативную конформацию эпитопа, а не линейную последовательность аминокислотных остатков.

Т-клеточные эпитопы представляют собой линейную последовательность аминокислотных остатков, составляющих часть антигена, и включают большее число аминокислотных остатков по сравнению с В-клеточными. Для их распознавания не требуется сохранения пространственной конфигурации.

Иммуногенность - способность антигена вызывать иммунную защиту макроорганизма. Степень иммуногенности определяют следующие факторы:
  • Чужеродность . Для того чтобы вещество выступило в качестве иммуногена, оно должно быть распознано как «не свое». Чем более чужероден антиген, т. е. чем менее он сходен с собственными структурами организма, тем более сильный иммунный ответ он вызывает. Например, синтез антител к бычьему сывороточному альбумину легче вызвать у кролика, чем у козы. Кролики относятся к отряду зайцеобразных и отстоят в филогенетическом развитии дальше от козы и быка, принадлежащих к парнокопытным.
  • Природа антигена . Наиболее сильными иммуногенами являются белки. Чистые полисахариды, нуклеиновые кислоты и липиды обладают слабыми иммуногенными свойствами. В то же время липополисахариды, гликопротеины, липопротеины способны в достаточной мере активировать иммунную систему.
  • Молекулярная масса . При прочих равных условиях большая молекулярная масса антигена обеспечивает большую иммуногенность. Антигены считаются хорошими иммуногенами, если их молекулярная масса больше 10 кД. Чем больше молекулярная масса, тем больше мест связывания (эпитопов), что приводит к возрастанию интенсивности иммунного ответа.
  • Растворимость . Корпускулярные антигены, связанные с клетками (эритроциты, бактерии), как правило, более иммуногенны. Растворимые антигены (сывороточный альбумин) также могут обладать высокой иммуногенностью, но они быстрее выводятся. Для увеличения времени их пребывания в организме, необходимого для развития эффективного иммунного ответа, применяют адъюванты (депонирующие вещества). Адъюванты - это вещества, которые используют для усиления иммунного ответа, например, вазелиновое масло, ланолин, гидроксид и фосфат алюминия, алюмокалиевые квасцы, хлористый кальций и др.
  • Химическое строение антигена . Увеличение числа ароматических аминокислот в синтетических полипептидах увеличивает их иммуногенность. При равной молекулярной массе (около 70000) альбумин является более сильным антигеном, чем гемоглобин. В то же время белок коллаген, молекулярная масса которого в 5 раз больше, чем у альбумина, и составляет 330000, обладает значительно меньшей иммуногенностью по сравнению с альбумином, что, несомненно, связано с особенностями строения этих белков.

Антигены главного комплекса гистосовместимости.

Антигены – генетически чужеродные вещества, которые при проникновении во внутреннюю среду организма или образуясь в организме, вызывают ответную специфическую иммунологическую реакцию, проявляющуюся синтезом антител, появлением сенсибилизированных лимфоцитов или возникновением толерантности к этому веществу, гиперчувствительности немедленного и замедленного типов, иммунологической памяти.

Свойства антигенов : специфичность (антигенность), иммуногенность.

Антигенность - это способность антигена индуцировать в организме иммунную реакцию.

Иммуногенность - это способность антигена формировать иммунитет.

Специфичность – это способность антигена избирательно взаимодействовать только с комплементарными ему антителами или Аг-распознающими рецепторами Т-лимфоцитов определенного клона.

Специфичность антигенов определяется особенностями структуры макромолекулы – наличием и характером эпитопов.

Эпитоп (антигенная детерминанта) – участок молекулы антигена, взаимодействующий с одним активным центром антитела или Т-клеточным рецептором. Эпитоп состоит из аминокислотных остатков. Количество эпитопов определяет валентность антигена.

Природа Аг. Антигенами являются природные или синтетические биополимеры, имеющие достаточно жесткую структуру и высокую молекулярную массу. Таковыми являются белки и их комплексы с углеводами (гликопротеиды), липидами (липопротеиды), нуклеиновыми кислотами (нуклеопротеиды).

Наиболее выраженными антигенными свойствами обладают белки как биополимеры с выраженной генетической чужеродностью. Чем дальше в филогенетическом родстве отстоят животные, тем большей антигенностью обладают их белки по отношению друг к другу. Это свойство белков используется для выявления филогенетического родства животных разных видов, в судебно-медицинской экспертизе (определение видовой принадлежности пятен крови) и в пищевой промышленности (для выявления фальсификации мясных продуктов).

Выраженность антигенных свойств связанас :

Ø молекулярной массой;

Ø растворимостью (коллоидным состоянием), например, кератин – это высокомолекулярный белок, но не может быть представлен в виде коллоидного раствора и, поэтому не является антигеном;

Ø способом введения в организм (антигенные свойства одних Аг лучше проявляются при их введении перорально, других – внутрикожно, третьих – внутримышечно и т.д.;

Ø скоростью их метаболизма (разрушения) в организме.

Значение молекулярной массы . Полисахариды обладают антигенными свойствами только при молекулярной массе не менее 600 000. Белки обладают антигенностью при молекулярной массе более 5 000 – 10 000 (5 -10 кД). Слабыми антигенами являются высокомолекулярные соединения коллаген, желатин, протамины (у них малая молекулярная масса). Но из этого правила есть исключения:

Свиной гормон поджелудочной железы – инсулин с молекулярной массой 3,8 кД обладает антигенностью, кровезаменитель декстран с молекулярной массой 100 кД антигеном не является;

Нуклеиновые кислоты имеют большую молекулярную массу, но обладают меньшей антигенностью, чем белки.

При денатурации (коагуляции) высокой температурой, кислотами, щелочами белки утрачивают антигенные свойства.

Значение дозы Аг. Чем больше доза антигена, тем более выражен иммунный ответ. Однако при слишком большой дозе антигена может наступить иммунологическая толерантность, т.е. отсутствие ответа организма на антигенное раздражение. Это явление объясняют стимуляцией антигеном субпопуляции Т-супрессоров.

Значение скорости метаболизма Аг в организме. Полипептиды, состоящие из D-аминокислот, медленно и неполностью разрушаются ферментами организма и не являются Аг, в отличие от полипептидов, построенных из L-аминокислот, которые активно метаболизируются в организме.

ВИДЫ АНТИГЕНОВ:

1. Экзогенные, эндогенные;

2. Полноценные и неполноценные (гаптены, полугаптены);

3. Тимус-зависимые и тимус-независимые;

4. Суперантигены;

5. Гетерогенные;

6. Аутоантигены;

7. Опухолевые;

8. Бактериальные (группоспецифические, видоспецифические, типоспецифические, О-, К-, Н-антигены и другие);

9. Вирусные;

10. Грибковые;

11. Протективные;

12. Изоантигены;

13. Антигены главного комплекса гистосовместимости.

Экзогенные антигены – попадают в организм из окружающей среды, подвергаются эндоцитозу и расщеплению в Аг-представляющих клетках (макрофагах, дендритных клетках тимуса, фолликулярных отросчатых клетках лимфатических узлов и селезёнки, М-клетках лимфатических фолликулов пищеварительного тракта, клетках Лангерганса кожи). Затем Аг-детерминанта (эпитоп) в комплексе с молекулой класса II МНС, встраивается в плазматическую мембрану Аг-представляющей клетки и предъявляется CD 4 + Т-лимфоцитам (Т-хелперам);

Эндогенные антигены – продукты собственных клеток организма. Чаще всего это аномальные белки опухолевых клеток и вирусные белки, синтезируемые вирусинфицированными клетками хозяина. Их антигенные детерминанты (эпитопы) предъявляются в комплексе с молекулой класса I МНС CD 8 + Т-лимфоцитам (Т-киллерам).

Полноценные Аг – обладают способностью индуцировать образование антител и взаимодействовать с ними;

Неполноценные Аг(гаптены) – низкомолекулярные вещества, которые не обладают способностью индуцировать образование антител и, но взаимодействуют с готовыми специфичными антителами. Гаптены приобретают свойства полноценных антигенов при связывании с высокомолекулярными веществами, например белками (шлепперами). К гаптенам относятся лекарственные препараты, например, антибиотики, которые способны запускать иммунный ответ при связывании с белками организма (альбумином), а также с белками на поверхности клеток (эритроцитов, лейкоцитов). В результате образуются антитела, способные взаимодействовать с гаптеном. При повторном введении в организм гаптена возникает вторичный иммунный ответ, нередко в виде аллергической реакции, например анафилаксии;

Полугаптены – неорганические вещества – йод, бром, хром, никель, нитрогруппа, азот и т.д. – связываясь с белками, например, кожи, способны вызвать аллергический контактный дерматит (ГЗТ), развивающийся при повторных соприкосновениях кожи с хромированными, никелированными предметами, нанесении на кожу йода и т.д.

Тимус-зависимые антигены – это антигены, которые для индукции иммунного ответа требуют участия Т-лимфоцитов, этих антигенов большинство;

Тимус-независимые – антигены, которые способны стимулировать синтез антител без помощи Т-клеток, например, ЛПС бактериальных клеточных стенок, высокомолекулярные синтетические полимеры.

Суперантигены (бактериальные энтеротоксины (стафилококковый, холерный), некоторые вирусы (ротавирусы) и др. – особая группа антигенов, которые в значительно меньших дозах, чем другие антигены, вызывают поликлональную активацию и пролиферацию большого числа Т-лимфоцитов (более 20%, тогда как обычные антигены стимулируют 0,01% Т-лимфоцитов). При этом вырабатывается много ИЛ-2 и других цитокинов, вызывающих воспаление и повреждение тканей.

Гетерогенные Аг – это перекрёстно реагирующие Аг, общие антигены у различных видов микробов, животных и человека. Это явление называется антигенной мимикрией. Например, гемолитические стрептококки группы А содержат перекрестно реагирующие антигены (в частности, М-белок), общие с антигенами эндокарда и клубочков почек человека. Такие бактериальные антигены вызывают образование антител, перекрестно реагирующих с клетками человека, что приводи к развитию ревматизма и постстрептококкового гломерулонефрита. У возбудителя сифилиса имеются антигены фосфолипиды сходные с фосфолипидами сердца человека и животных, поэтому кардиолипиновый антиген сердца быка используется для выявления антител к бледной трепонеме в серодиагностике сифилиса (реакция Вассермана). Антиген Форсмана – выявлен в эритроцитах барана, кошек, собак, почках морских свинок, сальмонеллах.

Аутоантигены – это эндогенные антигены, вызывающие выработку аутоантител. Различают:

- естественные первичные (нормальная ткань хрусталика глаза, нервная ткань и др.), что связано с нарушением аутотолерантности,

Приобретенные вторичные – продукты повреждения тканей микробами, вирусами, ожоговые, лучевые, холодовые, которые возникают из собственных тканей в результате изменения тканей при ожогах, отморожениях, при действии радиоактивного излучения.

Опухолевые (онкоантигены, Т-антигены (tumor - опухоль) - в результате злокачественной трансформации нормальных клеток в опухолевые в них начинают экспрессироваться (проявляться) специфические аномальные антигены, отсутствующие в составе нормальных клеток. Выявление иммунологическими методами опухолевых антигенов даст возможность ранней диагностики онкологических заболеваний.

Бактериальные антигены:

- группоспецифические – общие антигены у разных видов одного рода или семейства,

- видоспецифические – антигены характерные представителям одного вида,

- типоспецифические – определяют серологические варианты (серовары, серотипы) внутри одного вида,

- Н-антигены (жгутиковый) – белок флагеллин, входящий в состав бактериальных жгутиков, термолабилен;

- О-антигены (соматический) – представляет собой ЛПС Гр- бактерий, термостабильны. Эпитопы соматического антигена представлены гексозами (галакторза, рамноза и др.) и аминосахарами (N-ацетилглюкозамин, N-ацетилгалактозамин). У Гр+ бактерий соматический антиген представлен глицерилтейхоевой и рибитолтейхоевой кислотами.

- К-антигены (капсульные антигены) – находятся в капсуле и связаны с поверхностным слоем липополисахарида клеточной стенки. Содержат кислые полисахариды, в состав которых входят галактуроновая, глюкуроновая и идуроновая кислоты. Капсульные антигены используют для приготовления вакцин против менингококков, пневмококков, клебсиелл. Однако введение больших доз полисахаридных антигенов может вызвать толерантность. У –кишечной палочки К-антиген подразделяют на фракции А (термостабильная), В, L (термолабильные). Разновидностью К-антигена является поверхностный Vi-антиген (у сальмонелл), который обусловливает вирулентность микроба и персистенцию возбудителя у бактерионосителей.

- Антигенами бактерий являются также их токсины, рибосомы, ферменты.

Вирусные – а) суперкапсидные (белковые и гликопротеидные, например гемагглютинин и нейраминидаза вируса гриппа), б) капсидные (белковые), в) серцевинные (нуклеопротеидные).

Грибковые – дрожжеподобные грибы Candida albicans содержат полисахарид клеточной стенки – маннан, цитоплазматические и ядерные белки. Среди них выявлено 80 антигенов. Эти антигены вызывают немедленные (антитела Ig m, Ig G, Ig A, Ig E классов) и замедленные (Т-клеточные) реакции и сенсибилизацию без клинических проявлений. Антигены грибов обладают иммуностимулирующим и иммунодепрессивным действием.

Протективные – это антигенные детерминанты (эпитопы) микроорганизмов, которые вызывают наиболее сильный иммунный ответ, что обеспечивает иммунитет к соответствующему возбудителю при повторной инфекции. Впервые были обнаружены в экссудате пораженной ткани при сибирской язве. Наиболее иммуногенные, протективные пептиды вирусов используются для создания синтетических вакцин.

Изоантигены – антигены, по которым индивидуумы одного вида отличаются друг от друга (например, антигены эритроцитов – система АВО групп крови, Rh-фактор, антигены лейкоцитов – главного комплекса гистосовместимости).

Антигены главного комплекса гистосовместимости – гликопротеины клеточных мембран, которые играют важную роль в иммунном ответе, реакции отторжения трансплантата, определяют предрасположенность к некоторым заболеваниям. Спектр молекул главного комплекса гистосовместимости уникален для каждого организма и определяет его биологическую индивидуальность, что позволяет отличать «своё» (гистосовместимое) от «чужого» (несовместимого). Главный комплекс гистосовместимости обозначается как МНС (Major Histocompability Complex). Антигены МНС у разных видов животных обозначают по разному: у мышей - Н2-система, у собаки – DLA, у кролика - RLA, у свиньи – SLA. У человека антигены главного комплекса гистосовместимости обозначают HLA (Human leucocyte antigenes), так как для клинических и экспериментальных целей в качестве антигенов главного комплекса гистосовместимости определяют лейкоцитарные антигены. Человеческие лейкоцитарные антигены кодируются генами локализованными в 6-ой хромосоме. По химической структуре и функциональному назначению HLA подразделяют на два класса.

Антигены l класса МНС представлены на поверхности всех ядросодержащих клеток. Они регулируют взаимодействие мжду Т-киллерами и клетками мишенями. Основная биологическая роль нтигенов l класса заключается в том, что они являются маркерами “своего”. Клетки, несущие антигены l класса не атакуются собственными Т-киллерами в связи с тем, что в эмбриогенезе аутореактивные Т-киллеры, распознающие антигены l класса на собственных клетках, уничтожаются. Антигены l класса взаимодействуют с молекулой CD 8 на мембране Т-киллера.

Антигены ll класса МНС располагаются преимущественно на мембране иммунокомпетентных клеток (макрофагах, моноцитах, В- и активированных Т-лимфоцитах.Антигены ll класса взаимодействуют с молекулой CD 4 мембраны Т-хелпера, что вызываеь выделение лимфокинов, стимулирующих пролиферацию и созревание Т-киллеров и плазматических клеток.

Определение HLA-антигенов необходимо в следующих ситуациях:

Þ При типировании тканей с целью подбора донора реципиенту;

Þ Для установления связи наличия определенных антигенов МНС и предрасположенности к тому или иному заболеванию. Наиболее выраженная корреляция выявлена между наличием HLA-В27 и болезнью Бехтерева (анкилозирующий спондилоартрит): 95% больных имеют этот антиген.

Þ При оценке иммунного статуса (выявление несущих HLA-DR антигены а) активированных Т-лимфоцитов и б) мононуклеаров, участвующих в распознавании антигенов.

Различают полные и неполные антигены, или гаптены. Последние - относительно простые вещества, способные участвовать в иммунологических взаимодействиях, но не способные активировать АПК и самостоятельно индуцировать иммунный ответ. Лишь после присоединения к крупным, обычно белковым молекулам (носителям), гаптен может приобрести свойства полного антигена.

Антигенными свойствами обладают биополимеры - белки, их комплексы с углеводами (гликопротеиды), липидами (липопротеиды) нуклеиновыми кислотами (нуклеопротеиды), а также сложные полисахариды, липополисахариды. Для проявления антигенных свойств имеет значение размер молекулы. Молекулы с молекулярной массой более 10 000, как правило, антигенны, а при меньшей молекулярной массе чаще обладают свойствами гаптенов. Полисахариды антигенны при молекулярной массе выше 100 000. Полипептиды, состоящие из Lаминокислот, антигенны, а состоящие из D-аминокислот, лишены этого свойства. Белки при денатурации утрачивают свои антигенные свойства. Например, белки, коагулированные кипячением, обработкой крепкими растворами кислот или щелочей, перестают быть антигенами. Проявления антигенного действия связано с катаболическим разрушением антигенов в организме. Так, D-полипептиды медленно и не полностью разрушаются ферментами организма и не проявляют антигенных свойств.

Практически все природные субстраты, обладающие антигенными свойствами, являются комплексами нескольких антигенов. Ниже будет показано, что микробная клетка обладает множеством антигенов, свойственных отдельным ее структурам. Даже индивидуальные молекулы могут обладать несколькими антигенами.

Основными свойствами антигена являются: специфичность, чужеродность, иммуногенность или толерогенность.

Специфичность. Антигенная специфичность представляет собой уникальное биологическое явление, которое лежит в основе иммунологических взаимодействий в организме, а также лабораторных методов определения разных антигенов, серодиагностики, методов специфической профилактики и терапии инфекционных заболеваний.

Структура, обладающая индивидуальной антигенной специфичностью, называется антигенным детерминантом, или эпитопом. Последнее название отражает то, что антигенной активностью обладают только структуры лежащие на поверхности молекулы, а глубокие проявляют антигенность лишь при изменении конформации или разрушении молекулы. Разнообразие белковых эпитопов достигается за счет мозаики аминокислотных остатков, расположенных на глобулярной поверхности молекулы белка.

Эпитопы, определяющие антигенность белковой молекулы, состоят из 625 аминокислот и располагаются в разных частях молекулы, разделяясь неантигенными структурами. При этом эпитопы одной молекулы не обязательно должны иметь одинаковый состав и одинаковую специфичность. Количество одинаковых эпитопов на молекуле определяет число молекул антител, которые могут к ней присоединиться, т.е. валентность данного антигенного субстрата. Валентность антигенов возрастает с их молекулярной массой. Так, валентность яичного альбумина с молекулярной массой 45 000 равна 5, а валентность гемоцианина с мол. массой 6,5 млн. - 231. Эпитоп, отделенный от молекулы, может иметь только одну валентность и обладать свойствами гаптена, а вся молекула для данного эпитопагаптена играет роль носителя.

Поскольку эпитопы, определяющие антигенные свойства молекулы расположены на одних участках, а токсические свойства микробных токсинов определяют другие участки, могут быть приготовлены анатоксинымолекулы, лишенные токсических свойств, но сохранивших антигенные. Анатоксины служат основой вакцинных препаратов для создания антитоксического иммунитета.

Чужеродность. Антиген вызывает позитивный иммунный ответ (образование антител и активных лимфоцитов) только в тех случаях, когда он чужероден, т.е. обладает стектурами, отсутствующими в данном организме. К собственным антигенам организм толерантен. Только при изменениях, придающих антигену признаки чужеродности, он приобретает способность индуцировать позитивный иммунный ответ.

Строение антигенов отражает эволюционную близость обладающих ими организмов. Существуют общие антигены, свойственные представителям разных семейств, родов, видов. Имеются вариантные антигены, различные для особей одного и того же вида. Определение антигенного состава используется для классификации разных групп живых существ и выявления эволюционных связей между ними.

В ходе эволюции микроорганизмы, инфицирующие человека и животных, приобретают антигены, сходные с антигенами хозяина, что называется антигенной мимикрией. Это способствует тому, что к таким антигенам долго не возникает иммунологической реакции, и микроорганизмы получают дополнительный шанс для выживания в организме хозяина, поскольку они не распознаются как чужеродные. Чужеродные антигены, обладающие структурами, сходными с антигенами хозяина, получили название перекрестнореагирующих антигенов (ПРА). Однако, поскольку ПРА находятся в комплексе с другими высокоиммуногенными для организма антигенами, иммунный ответ на них может возникнуть. В этом случае образовавшиеся гуморальные и клеточные антитела вступают в контакт с антигенами хозяина и могут вызвать иммунопатологический процесс. Известно, что некоторые штаммы гемолитических стрептококков могут обладать ПРА с антигенами эндокарда, почечных клубочков и нервной ткани человека, что способствует развитию ревматизма, гломерулонефрита и хореи. Соответственно вирус кори имеет ПРА с основным белком миелина, и иммунная реакция способствует демиелинизации нервных волокон и развитию рассеянного склероза.

Антигены нервной системы, глаз, репродуктивных органов отделены от внутренней среды физиологическими барьерами. Их антигены не индуцируют полноценную толерантность и не вызывают в здоровом организме аутоиммунной реакции, поскольку не проникают в органы иммуногенеза. Такие антигены называют забаръерными. В случаях повреждения барьеров при травме или заболевании забарьерные антигены поступают в общую циркуляцию и могут вызвать иммунопатологический процесс.

Собственные антигены организма могут подвергнуться модификации при действии внешних химических или физических факторов или вступить в контакт с чужеродными веществами гаптенной природы. В результате формируются антигены, гаптенная часть которых - чужеродная структура, а носитель - собственный антиген. Такие модифицированные антигены часто служат причиной развития аллергических реакций.

Иммуногенность и толерогенность - альтернативные свойства каждого антигенного субстрата. Для индукции иммунного ответа и толерантности необходимо воздействие антигена на лимфоцит, обладающий рецепторами для данного антигена - антигенреактивную клетку (АРК). Отличия состоят в том, что при индукции позитивной иммунной реакции АРК получают стимулы от цитокинов, обеспечивающие их пролиферацию и формирование клона эффекторных клеток. При индукции иммунологической толерантности АРК не подвергается дальнейшей стимуляции и либо погибает, либо лишается рецепторов к антигену.

Антиген (от греч. anti - против и genos - создавать) - это биополимер органичес­кой природы, генетически чужеродный для макроорганизма, который при попадании в последний распознается его иммунной системой и вызывает иммунные реакции, направленные на его устранение.

Свойства антигенов:

антигенность - потенциаль­ная способность молекулы антигена акти­вировать компоненты иммунной системы и специфически взаимодействовать с фактора­ми иммунитета (антитела, клон эффекторных лимфоцитов);

иммуногенность - потенциальная способ­ность антигена вызывать по отношению к себе в макроорганизме специфическую за­щитную реакцию (иммунный ответ).

Степень иммуногенности зависит от молекулярных особенностей антигена (природа, химический состав, молекулярный вес, струк­тура), клиренса антигена в организме, реактивности макроорганизма.

специфичность - способность ан­тигена индуцировать иммунный ответ к строго определенному эпитопу.

Способностью вызывать развитие иммунного ответа и определять его специфичность обладает фрагмент молекулы Аг ¾ антигенная детерминанта (эпитоп), избирательно реагирующая с Аг-распознающими рецепторами и Ат.

Классификация по происхождению:

экзоген­ные (возникшие вне организма);

эндоген­ные (возникшие внутри организма) антигены.

аутогенные ¾ это эндоген­ные антигены, структурно неизмененные молекулы собственного организма, синтези­руемые в физиологических усло­виях. В норме аутоантигены не вызывают ре­акцию иммунной системы вследствие сформи­ровавшейся иммунологической толерантности(невосприимчивости) либо их недоступности для контакта с факторами иммунитета - это так называемые забарьерныеантигены (головной мозг, хрусталик глаза, фолликулы щитовидной железы, семенные канальца яичек). При срыве толерантности или нарушении целост­ности биологических барьеров (наиболее час­тая причина - травма) компоненты иммунной системы начинают специфически реагировать на аутоантигены выработкой специфических факторов иммунитета (аутоантитела, клон аутореактивных лимфоцитов).

неоан­тигены (опухолевые) ¾ это эндоген­ные антигены, которые возникают в организме в результате мутаций. После модификации мо­лекулы приобретают черты чужеродности.

Классификация по природе: биополимеры белковой (протеиды) и небелковой природы (полиса­хариды, липиды, липополисахариды, нуклеи­новые кислоты и пр.).

Классификация по молекулярной структуре:



глобуляр­ные (молекула имеет шаровидную форму);

фибриллярные (форма нити).

Классификация по степени иммуногенности:

полноценные ан­тигены ¾ обладают выраженной антигенностью и иммуногенностью - иммунная система чувствительного организма реагирует на их введение выработкой факторов иммунитета. Такие вещества, как правило, имеют доста­точно большую молекулярную массу (более 10 кДа), большой размер молекулы (частицы) в виде глобулы и хорошо взаимодействуют с факторами иммунитета;

неполноценные антигены , или гаптены ¾не способны при введении в нормальных условиях индуцировать в организме иммунный ответ, так как обладают крайне низкой иммуногенностью. Однако свойство антигенности они не утратили, что позволяет им специфически взаимодейс­твовать с уже готовыми факторами иммунитета (антителами, лимфоцитами). Чаще всего гаптенами являются низкомолекулярные соединения (молекулярная масса меньше 10 кДа). При соединении гаптена с белковой молекулой, например альбуминами сыворотки крови, образовавшийся конъюгат обладает всеми свойствами полноценного антигена и вызы­вает при введении в организм выработку ан­тител или клона лимфоцитов, специфичных к гаптенной части комплекса. При этом спе­цифичность в составе молекулы конъюгата определяется гаптенной частью, а иммуногенность - белком-носителем. Молекула бел­ка-носителя назввается шлеппер (от нем. schlepper - буксир).

Классификация по степени чужеродности:

ксеногенные антигены (гетерологичные ) - общие для организмов, стоящих на разных ступенях эволюционного развития, например, относящиеся к разным родам и видам. Примером может быть полисахаридный антиген Форсмана, присутствующий в эритроцитах кошек, собак, овец и почке морских свинок;

аллогенные антигены (групповые ) - об­щие для генетически неродственных орга­низмов, но относящихся к одному виду. На основании аллоантигенов общую популяцию организмов можно подразделить на отдельные группы. Примером таких антигенов у людей являются антигены крови (системы АВО, HLA и др.). Аллогенные ткани при трансплантации иммунологически несов­местимы - они отторгаются или лизируются реципиентом. Микробы на основании груп­повых антигенов могут быть подразделены на серогруппы, что имеет большое значение для микробиологической диагностики (например, классификация сальмонелл Кауфмана-Уайта);



изогенные антигены (индивидуаль­ные ) - общие только для генетически иден­тичных организмов, например для однояйцо­вых близнецов, инбредных линий животных. Изотрансплантаты обладают практически полной иммунологической совместимостью и не отторгаются реципиентом при пересадке. Примером таких антигенов в популяции лю­дей являются антигены гистосовместимости, а у бактерий - типовые антигены, не дающие дальнейшего расщепления.

Классификация по направленности активации и обеспе­ченности иммунного реагирования:

иммуногены при попадании в организм спо­собны индуцировать продуктивную защитную реакцию иммунной системы, которая заканчивается выработкой факторов иммунитета (антите­ла, антигенореактивные клоны лимфоци­тов). В клинической практике иммуногены используют для иммунодиагностики, имму­нотерапии и иммунопрофилактики многих патологических состояний;

толероген является полной противополож­ностью иммуногену. При взаимодействии с системой приобретенного иммунитета он вы­зывает включение альтернативных механиз­мов, приводящих к формированию иммуноло­гической толерантности или неотвечаемости на эпитопы данного толерогена. Толерогену, как правило, присуща мономер­ность, низкая молекулярная масса, высокая эпитопная плотность и высокая дисперсность (безагрегатность) коллоидных растворов. Толерогены используют для профилактики и лечения иммунологических конфликтов и ал­лергии путем наведения искусственной неот­вечаемости на отдельные антигены;

аллерген ¾производимый им эффект, в отли­чие от иммуногена, формирует патологическую реакцию организ­ма в виде гиперчувствительности немедлен­ного или замедленного типа. По своим свойствам аллерген не отличается от иммуногена. В клинической практике ал­лергены применяют для диагностики инфек­ционных и аллергических заболеваний.

Антигены организма человека. С позиций клинической медицины наиболь­шее значение имеет определение группоспецифических антигенов (антигены групп крови), индивидуально специфических антигенов (антигены гисто­совместимости), органо- и тканеспецифических (раковоэмбриональные антигены).

Антигены гистосовместимости обнаружива­ются на цитоплазматических мембранах практи­чески всех клеток макроорганизма. Большая часть из них относится к системе главного ком­плекса гистосовместимости, или МНС (от англ. Main Hystocompatibility Complex). У человека МНС обозначается как HLA (от англ. Human Leukocyte Antigen), так как он ассоциирован с лейкоци­тами. Антигены гистосовместимости играют ключевую роль в осуществлении специфичес­кого распознавания «свой-чужой» и индук­ции приобретенного иммунного ответа. Они определяют совместимость органов и тканей при трансплантации в пределах одного вида, генетическую рестрикцию (ограничение) иммунного реагирования и другие эффекты. По химической природе анти­гены гистосовметимости представляют собой гликопротеиды, прочно связанные с цитоплазматической мембраной клеток. Их отдельные фрагменты имеют структурную гомологию с молекулами иммуноглобулинов. Различают два основных класса молекул МНС. Условно принято, что МНС I класса индуцирует преиму­щественно клеточный иммунный ответ, а МНС II класса ¾ гуморальный.

Антигены бактерий:

жгутиковые, или Н-антигены , локализуют­ся в локомоторном аппарате бактерий - жгутиках. Они представляют собой эпитопы сократительного белка флагеллина. При на­гревании флагеллин денатурирует, и Н-антиген теряет свою специфичность. Фенол не действует на этот антиген;

соматический, или О-антиген , связан с клеточной стенкой бактерий. Его основу со­ставляют липополисахарид (ЛПС). О-антиген проявляет термос­табильные свойства - не разрушается при кипячении. Однако соматичес­кий антиген подвержен действию альдегидов (например, формалина) и спиртов, которые нарушают его структуру. Если проиммунизировать животное жи­выми бактериями, имеющими жгутики, то будут вырабатываться антитела, на­правленные одновременно против О- и Н-антигенов. Введение животному про­кипяченной культуры стимулирует био­синтез антител к соматическому антигену. Культура бактерий, обработанная фенолом, вызовет образование антител к жгу­тиковым антигенам;

капсульные, или К-антигены , располагаются на поверхности клеточной стенки. Встречаются у бактерий, образующих капсулу. Как правило, К-антигены состоят из кислых полисахаридов (уроновые кислоты). В то же время у бациллы сибирской язвы этот антиген построен из по­липептидных цепей. По чувствительности к нагреванию различают три типа К-антигена: А, В, и L. Наибольшая термостабильность ха­рактерна для типа А, он не денатурирует даже при длительном кипячении. Тип В выдержи­вает непродолжительное нагревание (около 1 часа) до 60 °С. Тип L быстро разрушается при этой температуре. Поэтому частичное удале­ние К-антигена возможно путем длительного кипячения бактериальной культуры. На поверхности возбудителя брюшного ти­фа и других энтеробактерий, которые облада­ют высокой вирулентностью, можно обнару­жить особый вариант капсульного антигена. Он получил название антигена вирулентнос­ти, или Vi-антигена.

Антигенными свойствами обладают также бактериальные белковые токсины, ферменты и некоторые другие белки, которые секретируются бактериями в окружающую среду (на­пример, туберкулин). Столбнячный, дифтерий­ный и ботулинический токсины относятся к числу сильных полноценных антигенов, поэ­тому их используют для получения анатокси­нов для вакцинации людей.

Антигены вирусов:

ядерные (ко­ровые);

капсидные (оболочечные);

суперкапсидные (поверхностные).

Антигенный состав вириона зависит от стро­ения вирусной частицы. Антигенная специфичность простоорганизованных виру­сов связана с рибо- и дезоксирибонуклеопротеинами. Эти вещества хорошо растворяются в воде и поэтому обозначаются как S-антигены (лат. solutio - раствор). У сложноорганизованных вирусов часть антигенов связана с нуклеокапсидом, а другая - локализуется во внешней оболочке (суперкапсиде). Антигены многих вирусов отличаются вы­сокой степенью изменчивости. Это связано с постоянным мутационным процессом, кото­рый претерпевает генетический аппарат вирус­ной частицы. Примером могут служить вирус гриппа, вирусы иммунодефицитов человека.