Строение и функции внутреннего анализатора. Анализаторы органы чувств

Строение и функции внутреннего анализатора. Анализаторы органы чувств
Строение и функции внутреннего анализатора. Анализаторы органы чувств

Анализатор - это система, обеспечивающая восприятие, доставку в мозг и анализ в нем какого-либо вида информации (зрительной, слуховой, обонятельной и т. д.). Каждый анализатор органов чувств состоит из периферического отдела (рецепторов), проводникового отдела (нервных путей) и центрального отдела (центров, анализирующих данный вид информации).

Более 90% информации об окружающем мире человек получает с помощью зрения.

Орган зрения глаз состоит из глазного яблока и вспомогательного аппарата. К последнему относят веки, ресницы, мышцы глазного яблока и слёзные железы. Веки - складки кожи, выстланные изнутри слизистой оболочкой. Слезы, образующиеся в слёзных железах, омывают передний отдел глазного яблока и через носослёзный канал проходят в ротовую полость. У взрослого человека в сутки должно вырабатываться не менее 3-5 мл слез, выполняющих бактерицидную и увлажняющую роль.

Глазное яблоко имеет шарообразную форму и располагается в глазнице. При помощи гладких мышц оно может поворачиваться в глазнице. Глазное яблоко имеет три оболочки. Наружная - фиброзная, или белочная - оболочка спереди глазного яблока переходит в прозрачную роговицу, а ее задний отдел называется склерой. Через среднюю оболочку - сосудистую - глазное яблоко снабжается кровью. Впереди в сосудистой оболочке имеется отверстие - зрачок, позволяющий лучам света попадать внутрь глазного яблока. Вокруг зрачка часть сосудистой оболочки окрашена и называется радужкой. Клетки радужки содержат всего один пигмент, и если его мало, радужка окрашена в голубой или серый цвет, а если много - в карий или черный. Мышцы зрачка расширяют или сужают его в зависимости от яркости света, освещающего глаз, приблизительно от 2 до 8 мм в диаметре. Между роговицей и радужкой расположена передняя камера глаза, заполненная жидкостью.

Позади радужки расположен прозрачный хрусталик - двояковыпуклая линза, необходимая для фокусировки лучей света на внутреннюю поверхность глазного яблока. Хрусталик снабжен специальными мышцами, меняющими его кривизну. Этот процесс называется аккомодацией. Между радужкой и хрусталиком расположена задняя камера глаза.

Большая часть глазного яблока заполнена прозрачным стекловидным телом. Пройдя через хрусталик и стекловидное тело, лучи света попадают на внутреннюю оболочку глазного яблока - сетчатку. Это многослойное образование, причем три его слоя, обращенные внутрь глазного яблока, содержат зрительные рецепторы - колбочки (около 7 млн.) и палочки (около 130 млн.). В палочках содержится зрительный пигмент родопсин, они более чувствительны, чем колбочки, и обеспечивают черно-белое зрение при плохом освещении. Колбочки содержат зрительный пигмент иодопсин и обеспечивают цветное зрение в условиях хорошей освещенности. Считается, что есть три вида колбочек, воспринимающих красный, зеленый и фиолетовый цвета соответственно. Все остальные оттенки определяются комбинацией возбуждений в этих трех типах рецепторов. Под действием квантов света зрительные пигменты разрушаются, генерируя электрические сигналы, которые передаются от палочек и колбочек к ганглиозному слою сетчатки. Отростки клеток этого слоя образуют зрительный нерв, выходящий из глазного яблока через слепое пятно - место, где нет зрительных рецепторов.

Больше всего колбочек располагается прямо напротив зрачка - в так называемом желтом пятне, а в периферических отделах сетчатки колбочек почти нет, там располагаются одни палочки.

Выйдя из глазного яблока, зрительный нерв следует в верхние бугры четверохолмия среднего мозга, где зрительная информация подвергается первичной обработке. По аксонам нейронов верхних бугров зрительная информация попадает в латеральные коленчатые тела таламуса, а уж оттуда - в затылочные доли коры больших полушарий. Именно там формируется тот зрительный образ, который мы субъективно ощущаем.

Следует отметить, что оптическая система глаза формирует на сетчатке не только уменьшенное, но и перевернутое изображение предмета. Обработка сигналов в центральной нервной системе происходит таким образом, что предметы воспринимаются в естественном положении.

Зрительный анализатор человека обладает потрясающей чувствительностью. Так, мы можем различить освещенное изнутри отверстие в стене диаметром всего 0,003 мм. В идеальных условиях (чистота воздуха, безветрие) огонь зажженной на горе спички может быть различим на расстоянии 80 км. Тренированный человек (причем у женщин это получается гораздо лучше) может различать сотни тысяч цветовых оттенков. Зрительному анализатору достаточно всего 0,05 сек для распознавания объекта, который попал в поле зрения.

Слуховой анализатор

Слух необходим для восприятия звуковых колебаний в довольно широком диапазоне частот. В юношеском возрасте человек различает звуки в диапазоне от 16 до 20 000 герц, однако уже к 35 годам верхняя граница слышимых частот падает до 15 000 герц. Помимо создания объективной целостной картины об окружающем мире слух обеспечивает речевое общение людей.

Слуховой анализатор включает в себя орган слуха, слуховой нерв и центры мозга, анализирующие слуховую информацию. Периферическая часть органа слуха, то есть орган слуха, состоит из наружного, среднего и внутреннего уха.

Наружное ухо человека представлено ушной раковиной, наружным слуховым проходом и барабанной перепонкой.

Ушная раковина - хрящевое образование, покрытое кожей. У человека, в отличие от многих животных, ушные раковины практически неподвижны. Наружный слуховой проход - канал длиной 3-3,5 см, заканчивающийся барабанной перепонкой, отделяющей наружное ухо от полости среднего уха. В последней, имеющей объем около 1 см3, расположены самые маленькие кости организма человека: молоточек, наковальня и стремечко. Молоточек «рукояткой» срастается с барабанной перепонкой, а «головкой» подвижно присоединен к наковальне, которая другой своей частью подвижно соединена со стремечком. Стремечко, в свою очередь, широким основанием сращено с перепонкой овального окна, ведущего во внутреннее ухо. Полость среднего уха через евстахиеву трубу соединена с носоглоткой. Это необходимо для выравнивания давления по обе стороны барабанной перепонки при изменениях атмосферного давления.

Внутреннее ухо находится в полости пирамиды височной кости. К органу слуха во внутреннем ухе относится улитка - костный, спирально закрученный канал в 2,75 оборота. Снаружи улитка омывается перилимфой, заполняющей полость внутреннего уха. В канале улитки расположен перепончатый костный лабиринт, заполненный эндолимфой; в этом лабиринте находится звуковоспринимающий аппарат - спиральный орган, состоящий из основной мембраны с рецепторными клетками и покровной мембраны. Основная мембрана - тонкая перепончатая перегородка, разделяющая полость улитки и состоящая из многочисленных волокон различной длины. В этой мембране расположено около 25 тыс. рецепторных волосковых клеток. Один конец каждой рецепторной клетки фиксирован на волокне основной мембраны. Именно от этого конца отходит волокно слухового нерва. При поступлении звукового сигнала столбик воздуха, заполняющий наружный слуховой проход, колеблется. Эти колебания улавливаются барабанной перепонкой и через молоточек, наковальню и стремечко передаются на овальное окошко. При прохождении через систему звуковых косточек звуковые колебания усиливаются приблизительно в 40-50 раз и передаются на перилимфу и эндолимфу внутреннего уха. Через эти жидкости колебания воспринимаются волокнами основной мембраны, причем высокие звуки вызывают колебания более коротких волокон, а низкие - более длинных. В результате колебаний волокон основной мембраны возбуждаются рецепторные волосковые клетки, и сигнал по волокнам слухового нерва передается сначала в ядра нижних бугров четверохолмия, оттуда в медиальные коленчатые тела таламуса и, наконец, в височные доли коры больших полушарий, где и находится высший центр слуховой чувствительности.

Вестибулярный анализатор выполняет функцию регуляции положения тела и его отдельных частей в пространстве.

Периферическая часть этого анализатора представлена рецепторами, расположенными во внутреннем ухе, а также большим количеством рецепторов, расположенных в сухожилиях мышц.

В преддверии внутреннего уха расположены два мешочка - круглый и овальный, которые заполнены эндолимфой. В стенках мешочков находится большое число рецепторных волосковидных клеток. В полости мешочков расположены отолиты - кристаллы солей кальция.

Кроме того, в полости внутреннего уха присутствуют три полукружных канала, расположенных во взаимно перпендикулярных плоскостях. Они заполнены эндолимфой, в стенках их расширений находятся рецепторы.

При изменении положения головы или всего тела в пространстве отолиты и эндолимфа полукружных канальцев перемещаются, возбуждая волосковидные клетки. Их отростки образуют вестибулярный нерв, по которому информация об изменении положения тела в пространстве попадает в ядра среднего мозга, мозжечок, ядра таламуса и, наконец, в теменную область коры больших полушарий.

Тактильный анализатор

Осязание - это комплекс ощущений, возникающий при раздражении нескольких видов рецепторов кожи. Рецепторы прикосновения (тактильные) бывают нескольких видов: одни из них очень чувствительны и возбуждаются при вдавлении кожи на руке всего на 0, 1 мкм, другие возбуждаются лишь при значительном давлении. В среднем на 1 см2 приходится около 25 тактильных рецепторов, однако на коже лица, пальцев, на языке их гораздо больше. Кроме того, к прикосновениям чувствительны волоски, покрывающие 95% нашего тела. У основания каждого волоска находится тактильный рецептор. Информация от всех этих рецепторов собирается в спинной мозг и по проводящим путям белого вещества поступает в ядра таламуса, а оттуда в высший центр тактильной чувствительности - область задней центральной извилины коры больших полушарий.

Вкусовой анализатор

Периферический отдел вкусового анализатора - вкусовые рецепторы, расположенные в эпителии языка и, в меньшей степени, слизистой ротовой полости и глотки. Вкусовые рецепторы реагируют только на растворенные в воде вещества, а нерастворимые вещества вкуса не имеют. Человек различает четыре вида вкусовых ощущений: соленое, кислое, горькое, сладкое. Больше всего рецепторов, восприимчивых к кислому и соленому, расположено по бокам языка, к сладкому - на кончике языка, а к горькому - на корне языка, хотя небольшое число рецепторов любого из этих раздражителей разбросано по слизистой всей поверхности языка. Оптимальная величина вкусовых ощущений наблюдается при температуре в полости рта 29°С.

От рецепторов информация о вкусовых раздражителях по волокнам языкоглоточного и частично лицевого и блуждающего нерва поступает в средний мозг, ядра таламуса и, наконец, на внутреннюю поверхность височных долей коры больших полушарий, где расположены высшие центры вкусового анализатора.

Обонятельный анализатор

Обоняние обеспечивает восприятие различных запахов. Обонятельные рецепторы расположены в слизистой оболочке верхней части носовой полости. Общая площадь, занимаемая обонятельными рецепторами, составляет у человека 3-5 см2. Для сравнения: у собаки эта площадь составляет около 65 см2, а у акулы - 130 см2. Чувствительность обонятельных пузырьков, которыми заканчиваются рецепторные обонятельные клетки у человека, тоже не очень велика: для возбуждения одного рецептора необходимо, чтобы на него подействовало 8 молекул пахучего вещества, а ощущение запаха возникает в нашем мозге только при возбуждении приблизительно 40 рецепторов. Таким образом, человек субъективно начинает ощущать запах только в том случае, когда в нос попадает более 300 молекул пахучего вещества. Информация от обонятельных рецепторов по волокнам обонятельного нерва поступает в обонятельную зону коры больших полушарий, расположенную на внутренней поверхности височных долей.

Анализаторы человека (зрение, слух, обаняние, вкус, осязание)

Анализатор (analyser) — термин, введенный И.П.Павловым для обозначения функциональной единицы, ответственной за прием и анализ сенсорной информации какой-либо одной модальности.

Совокупность нейронов разных уровней иерархии, участвующих в восприятии раздражений, проведении возбуждения и в анализе раздражения.

Анализатор, вместе с совокупностью специализированных структур (органов чувств), содействующих восприятию информации среды, называют сенсорной системой.

Например, слуховая система представляет собой совокупность очень сложных взаимодействующих структур, включающую в себя наружное, среднее, внутреннее ухо и совокупность нейронов, называемых анализатором.

Часто понятия "анализатор" и "сенсорная система" используют как синонимы.

Анализаторы, как и сенсорные системы, классифицируют по качеству (модальности) тех ощущений, в формировании которых они участвуют. Это зрительный, слуховой, вестибулярный, вкусовой, обонятельный, кожный, вестибулярный, двигательные анализаторы, анализаторы внутренних органов, соматосенсорный анализаторы.

В анализаторе выделяют три отдела :

1. Воспринимающий орган или рецептор, предназначенный для преобразование энергии раздражения в процесс нервного возбуждения;

2. Проводник, состоящий из афферентных нервов и проводящих путей, по которому импульсы передаются к вышележащим отделам центральной нервной системы;

3. Центральный отдел, состоящий из релейных подкорковых ядер и проекционных отделов коры больших полушарий.

Кроме восходящих (афферентных) путей существуют нисходящие волокна (эфферентные), по которым осуществляется регуляция деятельности нижних уровней анализатора со стороны его высших, в особенности корковых, отделов

Анализаторы являются специальными структурами организма, служащими для ввода внешней информации в мозг для последующей ее переработки.

Второстепенные термины

  • рецепторы;

Структурная схема терминов

В процессе трудовой деятельности организм человека приспосабливается к изменениям окружающей среды благодаря регулирующей функции центральной нервной системы (ЦНС). Человек связан со средой с помощью анализаторов , которые состоят из рецепторов, проводящих нервных путей и мозгового конца в коре головного мозга. Мозговой конец состоит из ядра и рассеянных по коре головного мозга элементов, обеспечивающих нервные связи между отдельными анализаторами. Например, когда человек ест, то он чувствует вкус, запах пищи и ощущает её температуру.

Если раздражитель вызывает боль или нарушение деятельности анализатора — это будет верхний абсолютный порог чувствительности. Интервал от минимума до максимума определяет диапазон чувствительности (для звука от 20 Гц до 20 кГц).

У человека рецепторы настроены на следующие раздражители:

· электромагнитные колебания светового диапазона — фоторецепторы в сетчатке глаза;

· механические колебания воздуха — фонорецепторы уха;

· изменение гидростатического и осмотического давления крови — баро- и осморецепторы;

· изменение положения тела относительно вектора гравитации — рецепторы вестибулярного аппарата.

Кроме того, есть хеморецепторы (реагируют на воздействие химических веществ), терморецепторы (воспринимают температурные изменения как внутри организма, так и в окружающей среде), тактильные рецепторы и болевые.

В ответ на изменение условий окружающей среды, чтобы внешние раздражители не вызывали повреждений и гибели организма, в нём формируются компенсаторные реакции, которые могут быть: поведенческими (изменение места пребывания, отдёргивание руки от горячего или холодного) или внутренними (изменение механизма терморегуляции в ответ на изменение параметров микроклимата).

Человек обладает рядом важных специализированных периферических образований — органов чувств, обеспечивающих восприятие воздействующих на организм внешних раздражителей. К ним относятся органы зрения, слуха, обоняния, вкуса, осязания.

Нельзя путать понятия "органы чувств" и "рецептор". Например, глаз — это орган зрения, а сетчатка — фоторецептор, один из компонентов органа зрения. Органы чувств сами по себе не могут обеспечить ощущение. Для возникновения субъективного ощущения необходимо, чтобы возбуждение, возникшее в рецепторах, поступило в соответствующий отдел коры больших полушарий.

Зрительный анализатор включает в себя глаз, зрительный нерв, зрительный центр в затылочной части коры головного мозга. Глаз чувствителен к видимому диапазону спектра электромагнитных волн от 0,38 до 0,77 мкм. В этих границах различные диапазоны волн вызывают различные ощущения (цвета) при воздействии на сетчатку:

Приспособление глаза к различию данного объекта в данных условиях осуществляется путём трёх процессов без участия воли человека.

Аккомодация — изменение кривизны хрусталика так, чтобы изображение предмета оказалось в плоскости сетчатки (наведение на фокус).

Конвергенция — поворот осей зрения обоих глаз так, чтобы они пересеклись на объекте различия.

Адаптация — приспособление глаза к данному уровню яркости. В период адаптации глаз работает с пониженной работоспособностью, поэтому необходимо избегать частой и глубокой переадаптации.

Слух — способность организма принимать и различать звуковые колебания слуховым анализатором в диапазоне от 16 до 20000 Гц.

Обоняние — способность воспринимать запахи. Рецепторы расположены в слизистой оболочке верхнего и среднего носовых ходов.

Человек обладает разной степенью обоняния к различным пахучим веществам. Приятные запахи улучшают самочувствие человека, а неприятные — действуют угнетающе, вызывают отрицательные реакции вплоть до тошноты, рвоты, обморока (сероводород, бензин), способны изменять температуру кожи, вызывать отвращение к пище, приводить к подавленности и раздражительности.

Вкус — ощущение, возникающее при воздействии определённых химических веществ, растворимых в воде, на вкусовые рецепторы, расположенные на различных участках языка.

Вкус складывается из четырёх простых вкусовых ощущений: кислое, солёное, сладкое и горькое.

Функции и виды анализаторов человека (Таблица)

Все остальные вариации вкуса — это комбинации из основных ощущений. Различные участки языка имеют разную чувствительность к вкусовым веществам: кончик языка чувствителен к сладкому, края языка — к кислому, кончик и край языка — к солёному, корень языка — к горькому. Механизм восприятия вкусовых ощущений связан с химическими реакциями. Предполагают, что каждый рецептор содержит высокочувствительные белковые вещества, распадающиеся при воздействии определённых вкусовых веществ.

Осязание — сложное ощущение, возникающее при раздражении рецепторов кожи, наружных частей слизистых оболочек и мышечно-суставного аппарата.

Кожный анализатор воспринимает внешние механические, температурные, химические и другие раздражители кожи.

Одна из основных функций кожи — защитная. Растяжения, ушибы, давления обезвреживаются упругой жировой подстилкой и эластичностью кожи. Роговой слой предохраняет глубокие слои кожи от высыхания и весьма устойчив к различным химическим веществам. Пигмент меланин предохраняет кожу от воздействия ультрафиолетовых лучей. Неповреждённый слой кожи непроницаем для инфекций, а кожное сало и пот создают гибельную кислую среду для микробов.

Важная защитная функция кожи — участие в терморегуляции, т.к. 80% всей теплоотдачи организма осуществляется кожей. При высокой температуре окружающей среды кожные сосуды расширяются и теплоотдача конвекцией усиливается. При низкой температуре сосуды суживаются, кожа бледнеет, теплоотдача уменьшается. Отдача тепла через кожу идёт также и потоотделением.

Секреторная функция осуществляется через сальные и потовые железы. С кожным салом и потом выделяются йод, бром, токсические вещества.

Обменная функция кожи — участие в регуляции общего обмена веществ в организме (водного, минерального).

Рецепторная функция кожи — восприятие извне и передача сигналов в ЦНС.

Виды кожной чувствительности: тактильная, болевая, температурная.

С помощью анализаторов человек получает информацию о внешнем мире, которая определяет работу функциональных систем организма и поведение человека.

Максимальные скорости передачи информации, принимаемой человеком с помощью различных органов чувств, приведены в таб. 1.6.1

Таблица 1. Характеристики органов чувств

Проводящий путь зрительноговестибулярного анализатора 

Лекция 5. Анализаторы

Анализаторы – это нейро-сенсорные органы, которые способны регистрировать импульсы в центральной части анализатора. Впервые понятие анализаторов ввел Семенов и он выделил в анализаторах 3 составляющие их структуры:

    рецепторная часть (тепло, холод)

    проводящая часть (слуховой нерв, зрительный)

    центральная часть, которая представлена определенной зоной коры больших полушарий.

У человека выделяют зрительный и слуховой анализаторы, кроме того, вестибулярный, обонятельный и тактильный анализаторы.

Зрительный анализатор.

Это нейро-сенсорный орган, который способен регистрировать электромагнитные лучи видимой части спектра. Лучи, находящиеся ниже зоны восприятия называются инфракрасными, выше – УФ.

Рецепторной частью анализатора является рецепторы сетчатки, т.к. палочки и колбочки. Проводящей частью – зрительные нервы, которые образуют хиазму на уровне среднего мозга. Центральной частью являются воспринимающие области коры больших полушарий (затылочные доли).

Орган зрения.

Для человека характерен парный орган зрения – глаза, которые залегают в глазнице. К стенкам глазницы глаза присоединятся за счет 3 пар глазо-двигательных мышц. Глаза находятся под защитой бровей, ресниц, век. В верхней части глазницы над глазом находится слезная железа. Её секрет – слезы – смачивают поверхность глаза, препятствуют ее пересыханию, а также содержат бактерицидные вещества, например, лизоцин,который препятствует развитию на слизистой бактерий. Частично слезы попадают через проток в носовую полость.

Глаз окружен оболочками, причем самая наружная оболочка глаза – белочная оболочка, или склера, на передней стороне переходит в более толстую и прозрачную роговицу. Кроме того склера соединяется со слизистой выстилкой века, формируя конъюнктиву, которая удерживает глаз в глазнице, и, кроме того, защищает роговицу от внешних воздействий.

Более внутренняя оболочка глаза – это сосудистая оболочка, которая содержит капилляры кровеносной системы, т.к. они отсутствуют в самой сетчатке, т.е. основная функция сосудистой оболочки – трофическая.

Самая внутренняя часть сосудистой оболочки – это пигментный слой, где располагаются пигменты: фусцин и меланин. В пигментный слой погружены наружные членики рецепторов палочек и колбочек, поэтому основная функция пигментного слоя заключается в удержании лучей и в возбуждении рецепторов. На передней стороне глаза сосудистая оболочка и пигментный слой переходят в радужную оболочку, причем эта оболочка прерывиста и перерыв в ней называется зрачком.

Диафрагма зрачка может постоянно меняться в зависимости от освещения. Диафрагма зрачка изменяется в зависимости от сокращения кольцевых и радиальных мускульных волокон, которые иннервируются парасимпатической системой.

Самая внутренняя оболочка глаза – сетчатка – содержит рецепторы: палочки и колбочки. Концентрация рецепторов не одинакова в различных частях глаза: палочки преобладают на периферии глаза, колбочки – в центре глаза, в особенности в районе, так называемой, центральной ямки. Здесь образуется желтое пятно, т.е. максимальная концентрация колбочек, и здесь наиболее хорошо воспринимаются цвета. Рецепторы оплетены нейронами, аксоны которых, собираясь вместе, формируют зрительный нерв.

Место выхода зрительного нерва называется слепым пятном.

К светопреломляющим оптическим структурам глаза относят:

    роговица

    водянистая влага, заполняющая камеры глаза

    хрусталик

    стекловидное тело,

причем сила преломления измеряется в диоптриях.

На сетчатке каждого глаза за счет преломляющей силы сред, в первую очередь хрусталика, строится действительное, обратное и уменьшенное изображение. Человек видит в прямом виде благодаря ежедневной тренировке зрительного анализатора и показателей с других анализаторов.

Оптическая установка глаза на объект, который перемещается относительный глаз, называется аккомодацией, причем лучи, отраженные от объекта в норме, должны сходиться в точку фокуса на сетчатку. Аккомодация достигается при помощи изменения преломляющей силы хрусталика. Например, если предмет находится близко от глаз, ресничная мышца сокращается, цинновые связки расслабляются, хрусталик принимает форму цилиндра, его преломляющая сила максимальна и лучи сходятся в точку фокуса на сетчатке. Если предмет находится далеко от сетчатки, ресничная мышца расслабляется, цинновые связки натягиваются, хрусталик принимает плоскую форму, его преломляющая сила минимальна, и лучи сходятся в точку фокуса на сетчатку. Считается, что ближайшая точка ясного видения находится на таком минимальном расстоянии от глаз, когда 2 ближайшие точки объекта хорошо различимы.

Дальняя рамка ясного видения залегает в бесконечности, однако заметная аккомодация наблюдается, только когда расстояние до объекта не превышает 60 метров. Очень хорошая аккомодация наблюдается, когда расстояние до объекта становится 20 метров.

Патологии аккомодации.

В норме лучи сходятся в точку фокуса на сетчатке глаза.

Близорукость миопия – в этом случае лучи сходятся в точку фокуса до сетчатки.

Причины миопии:

    врожденная (глаз больше норма на 2-3 мм)

    ухудшение эластичности связок, ресничная мышца утомлена и наблюдается спазм аккомодации.

Помогают двояковогнутые стекла.

Дальнозоркость – в этом случае параллельный пучок света собирается в точку фокуса за сетчаткой.

Причины:

    длина глаза меньше нормы на 2-3 мм

    неэластичность связок, которая наблюдается с возрастом, поэтому после 40 развивается возрастная дальнозоркость.

Помогают двояковыпуклые стекла.

Астигматизм – в этом случае кривизна роговицы повышена, и лучи вообще не сходятся в точку фокуса. Помогают цилиндрические стекла.

Сетчатка глаза.

Сетчатка глаза представляет собой совокупность рецепторов (палочек и колбочек), т.е. является периферической частью зрительного анализатора.

Строение сетчатки напоминаем строение 3хнейронной сети. Наружной частью рецепторов погружены в пигментный слой; здесь, в пигментном слое, находятся пигменты, которые удерживают световые лучи. Рецепторы связаны со слоем биполярных нейронов, причем каждый такой нейрон связан только с одним рецептором. Биполярные нейроны связаны с мультиполярным, причем аксоны мультиполярных нейронов, объединяясь, образуют зрительный нерв. А одним мультиполярный нейрон может быть связан сразу с несколькими биполярными. Между мультиполярными нейронами находится звездчатая клетка, которая соединяет в единую сеть все рецептивные поля.

Глаз человека из всех наземных животных инвертирован. Это значит, что луч сета попадает в начале на стекловидное тело, затем на слои нейронов, и только затем на рецепторы. Таким образом, до сетчатки доходит рассеянный свет и рецепторы не поражаются. У многих морских животных глаз не инвертирован, т.е. рассеянный свет попадает прямо на рецепторы. Палочки и колбочки содержат пигменты, которые распадаются под воздействием света. В палочках содержится пигмент родопсин, в колбочках – йодапсин.

Родопсин способен распадаться на пигмент ретинен и белок опсин под действием даже небольшого количества света. Поэтому палочки обеспечивают зрение в сумерках.

Йодапсинов 3 вида и он распадается под действием интенсивного освещения, поэтому йодапсины воспринимают цвет, а за счет 3 видов этого пигмента воспринимаются все цвета видимой части спектра.

Фотохимическая реакция распада родопсина вызывает деполяризацию мембраны палочки, и эта волна деполяризации охватывает сначала биполярные нейроны, а затем мультиполярные. При дальнейшем действии света пигмент ретин превращается в витамин А. Обратный синтез родопсина происходит как на свету, так и в темноте, однако в темноте идет быстрее, поэтому при длительном пребывании на ярком свету, либо при воздействии света, отраженного от снега, или нехватке витамина А наблюдается болезнь гемералопия, или куриная слепота.

Патологии колбочек связаны с патологиями цветовосприятия, т.к. колбочки отвечают за восприятие цвета, оттенков и насыщенности:

    частичная потеря цветоощущения

    дальтонизм (человек не различает определенные цвета спектра: красный=зеленый, желтый=синий)

    полная потеря цветоощущения (ахроматическое зрение)

Для человека характерно зрение двумя глазами, или бинокулярное зрение. Оно позволяет правильно оценить расстояние до предмета, оценить фактуру, объем, рельефность, причем лучи, отраженные от одной точки предмета, способны фокусироваться в одном месте на сетчатках обоих глаз (идентичная фиксация), либо в разных местах (неидентичная фиксация).

Благодаря неидентичной фиксации человек воспринимает рельефность и объем. Импульсы по зрительным нервам направлены в центры в затылочных долях, где и формируется общая картинка.

Слуховой анализатор.

Второй ведущий анализатор у человека. Это нейро-сенсорный орган, который воспринимает звуковые колебания в определенном диапазоне от 16 тыс. до 22 тыс. кГц. Область ниже восприятия – инфразвук, выше восприятия – ультразвук.

Слуховой анализатор состоит и 3 частей:

    рецепторная часть. Представлена механо-рецепторами внутреннего уха, которые формируют кортив орган

    слуховые нервы, которые образуют хиазму на уровне моста

    центральная часть, которая включает определенные центры в височных долях коры.

Орган слуха.

Для человека характерен парный орган слуха, который включает наружное ухо, среднее ухо и внутреннее ухо.

Наружное ухо представлено ушной раковиной и слуховым проходом. Раковина осуществляет направленный прием звука. Слуховой проход 2,5 см покрыт ресничным эпителием. В эпителиальных клетках вырабатывается секрет, особенно в маленьких одноклеточных железках, которые синтезируют ушную серу. Она выполняет функцию защиты, т.к. на ней оседают пыль, и, кроме того, сера содержит бактерицидные вещества, которые убивают бактерии. Кроме того, воздух в ушном проходе согревается и увлажняется. Ушной проход заканчивается барабанной перепонкой, которая имеет волокнистую структуру. Звуковые волны ударяют в барабанную перепонку и волокна перепонки начинают колебаться, что приводит к колебанию косточек среднего уха.

Среднее ухо представляет собой полость, заполненную воздухом, причем для выравнивания давления между средним ухом и носоглоткой возникает связь в виде Евстахиевой трубы. В среднем ухе располагаются косточки: молоточек, наковальня и стремечко. Молоточек своей рукояткой связан с барабанной перепонкой, он контактирует с наковальней, а наковальня со стремечком, причем площадь контакта поверхности от барабанной перепонки к стремечку, которое располагается на овальном окне, уменьшается, и это дает возможность усиливать слабые звуки и ослаблять сильные. Таким образом, среднее ухо принимает участие в передачи колебаний от барабанной перепонки к внутреннему уху.

Внутреннее ухо представляет собой костный лабиринт в виде улитки, которая закручена 2,5 оборота в височной кости. С полостью среднего уха костный лабиринт сообщается при помощи овального и круглого окна, которые затянуты мембранными перепонками, причем на мембране овального окна располагается косточка стремечко. Внутри костного лабиринта проходит перепончатый лабиринт, представленный 2 мембранами: базальная мембрана и рейснерова мембрана. На вершине улитки мембраны соединяются, но в целом эти мембраны делят улитку на 3 канала, или лестницы. Вск каналы внутреннего уха заполнены жидкостью, причем улитковый канал заполнен эндолимфой, а барабанный и преддверья заполнены перелимфой. Эти жидкости несколько различны по составу.

Звуковая волна приводит к колебаниям косточек среднего уха. Наблюдаются колебания мембраны овального окна, и эти колебания передаются на жидкость внутреннего уха, и они гасятся на мембране круглого окна, причем круглое окно выступает в роли резонатора. Колебания передаются на базальную мембрану и эндолимфу, и регистрируются находящимися здесь кортиевым органом. Кортиев орган – это рецепторная часть анализатора, который представлен волосковидными клетками и эти клетки располагаются на основной мембране в несколько рядов. Эти клетки закрыты покровной мембраной, которая одним концом присоединяется к базальной мембране в основании улитки, а второй конец её свободен.

Колебания жидкости приводят к колебанию основной мембраны и к тому, что покровная мембрана кортиевого органа начинает раздражать волоски механо-рецепторов. Мембрана рецепторов деполяризуется, и волна деполяризации идет по слуховому нерву.

Волокна основной мембраны имеют разную толщину и могут колебаться с разной амплитудой, что обеспечивает дифференцировку высоких и низких звуков.

Считается, что в основании улитки воспринимаются высокие звуки, на вершине улитки – низкие звуки. Существует несколько гипотез восприятия и частотного анализа звука:

  1. гипотеза резонанса. Считается, что в основании улитки базальная мембрана приходит в резонанс со звуковой волной и покровная мембрана раздражает небольшую группу волосковидных клеток.
  2. гипотеза залпов. Считается, что на вершине улитки покровная мембрана раздражает целые рецептивные поля и в ЦНС отправляется целый залп импульсов. Считается, что таким образом воспринимаются низкие звуки.

Вестибулярный аппарат.

Вестибулярный анализатор.

Это нейро-сенсорный орган, который регистрирует изменения положения тела либо частей тела, относительно друг друга. Вестибулярный анализатор состоит из 3 частей:

    механо-рецепторы вестибулярного аппарата

    вестибулярная ветвь слухового нерва

    центральная часть в височной кости

Вестибулярный аппарат (в.а) залегает в височной кости и связан с костным лабиринтом внутреннего уха, хотя в.а. и улитка внутреннего уха имеют абсолютно различное происхождение.

В.а. представлен костным лабиринтом, заполненным жидкостью, внутри которого проходит перепончатый лабиринт, также заполненный жидкостью. Перепончатый лабиринт формирует органы преддверья, который представлены круглым и овальным мешочками и 3 полуокружными каналами, причем каждый канал связан и с круглым, ис овальным мешочком. На одном из концов канала находится расширение, или ампула.

Органы преддверья выстланы эпителием и заполнены жидкостью. Среди клеток эпителия располагаются группами волосковидные клетки. Сверху над клетками находится студенистая мембрана, в которую погружены волоски клеток.

Анализаторы человека

В мембране находятся кристаллы Ca2+, называемые отолитами, или статоцистами. При перемещении тела, либо головы овальный и круглый мешочки начинают смещаться друг относительно друга, начинают смещаться отолиты, которые тянут за собой студенистую мембрану и она раздражает волосковидные клетки.

Органы преддверья воспринимают начало и конец прямолинейного движения, прямолинейное ускорение, силу тяжести. Полуокружные каналы воспринимают вращательные движения и угловое ускорение, они заполнены жидкостью, причем волосковидные клетки находятся только в ампулах. При изменении положения тела жидкость, заполняющая ампулы, отстает от стенок ампулы и раздражает волоски.

Вкусовой анализатор.

Вкусовые рецепторы располагаются во вкусовых сосочках, которые формируются на языке и на слизистой рта. Импульсы от рецепторов идут в теменные доли коры больших полушарий. Считается, что кончик языка воспринимает сладкий вкус, у корня языка – горький вкус, по бокам – кислый и соленый.

Обонятельный анализатор.

Это единственный анализатор, который не имеет представительства в коре. Рецепторы располагаются в носовой полости и способны воспринимать летучие соединения. Эти импульсы анализируются на уровне древней коры, а также за счет лимбической системы мозга.

Осязательный анализатор.

Рецепторная часть этого анализатора относится к коже, где располагаются рецепторы боли, тепла, холода – тактильные рецепторы. Эти рецепторы могут быть представлены свободными нервными окончаниями, например, рецепторы боли, а также инкапсулированными нервными окончаниями, например, рецепторы давления. Чувствительные нервы этого анализатора формируют перекрест на уровне варолиевого моста, а центральная часть анализатора находится в теменных долях коры.

Антропологические методы оценки волос

2. Понятие об антропогенезе. Основные теории происхождения человека. Краткая характеристика космизма (внеземного происхождения)

Происхождение человека, как биологического вида. Каждого человека, как только он начинал осознавать себя личностью посещал вопрос "откуда мы взялись". Несмотря на то, что вопрос звучит абсолютно банально, единого ответа на него не существует…

Биоэкологические особенности коллекции видов Средиземноморья Сочинского парка "Дендрарий"

1.3 Краткая характеристика растительности Средиземноморья

Бонитировка Михайловского района по сибирской косуле

1. Краткая физико-географическая характеристика

Михайловского района. Михайловский район находится на юге Зейско-Буреинской равнины. Граничит на Западе с Константиновским и Тамбовским, на Севере с Октябрьским, на Севере-Востоке с Завитинским, на Востоке с Бурейскими районами…

Вирус чумы плотоядных

2.1.2 Краткая характеристика клинических признаков

Инкубационный период длится 4—20 дней. Чума плотоядных может протекать молниеносно, сверхостро, остро, подостро, абортивно, типично и атипично. По клиническим проявлениям различают катаральную, легочную, кишечную и нервную формы болезни…

Динамика развития зообентоса степных рек Краснодарского края

1.2 Краткая характеристика района исследования

Азово-Кубанской низменность расположена в северо-западной части Краснодарского края, на севере граничит с Нижнедонской низиной и Кумо-Манычской впадиной, на юге — с предгорьями Большого Кавказа, на востоке — со Ставропольской возвышенностью…

Класс млекопитающие, или звери (mammalia, или theria)

2. Краткая характеристика класса млекопитающих

Млекопитающие — наиболее высокоорганизованный класс позвоночных животных. Размеры их тела различны: у карликовой белозубки — 3,5 см, синего кита- 33 м, масса тела соответственно 1,5 г и 120 т…

Мутационная изменчивость

4. Краткая характеристика видов мутаций

Почти любое изменение в структуре или количестве хромосом, при котором клетка сохраняет способность к самовоспроизведению, обусловливает наследственное изменение признаков организма.

Основные анализаторы человека

По характеру изменения генома, т.е. совокупности генов…

Отдел покрытосеменные (цветковые)

2.1 Краткая характеристика классов

Покрытосеменные разделяют на два класса — двудольные и однодольные. Для двудольных характерны: две семядоли в семени, открытые проводящие пучки (с камбием), сохранение в течение всей жизни главного корня (у особей, родившихся из семян)…

Понятие возраста человека

2. Основные стадии эволюции человека. Краткая характеристика австралопитека

Большое значение для изучения вопроса имеет синхронизация археологических эпох с геологическими периодами истории Земли. Одна из "революционных" теорий о месте человека в природе и истории принадлежит Ч. Дарвину. С момента публикации в 1871 г…

Проблемы индивидуальной перцепции

I.1.1 Виды анализаторов. Строение анализаторов

Анализатором, или сенсорной системой, является совокупность периферических и центральных образований нервов, способных к преобразованию действий раздражителей в адекватный нервный импульс…

Система удобрений

2. Краткая характеристика хозяйства

ОАО "Надежда" располагается на территории Морозовского района Ростовской области, в 271 километре от Ростова-на-Дону. Хозяйство занимает площадь в 13139,3, из них: пашня — 9777 га, выгоны, залежи, перелоги — 1600 га, сады, ягодники — 260 га…

Слуховой анализатор

1. Значение изучения анализаторов человека с точки зрения современных информационных технологий

Уже несколько десятков лет назад люди предпринимали попытки создания систем синтеза и распознавания речи в современных информационных технологиях. Разумеется, все эти попытки начинались с исследования анатомии и принципов работы речевых…

Теплообразование и терморегуляция человеческого организма

1.1 Структурно-функциональная характеристика, классификация и значение анализаторов в познании окружающего мира

Анализатор — нервный аппарат, осуществляющий функцию анализа и синтеза раздражителей, исходящих из внешней и внутренней среды организма. Понятие анализатор введено И.П. Павловым…

Учение о ноосфере В.И. Вернадского

1. Краткая характеристика ноосферы

Учение о ноосфере возникло в рамках космизма — философского учения о неразрывном единстве человека и космоса, человека и Вселенной, о регулируемой эволюции мира. Понятие ноосферы как обтекающей земной шар идеальной, «мыслящей» оболочки…

Флора парка им. И.Н. Ульянова

1.5 Растительность (краткая характеристика).

В прошлом значительная площадь была занята степной растительностью, ныне почти сплошь уничтоженной распашкой и заменённой посевами сельскохозяйственных и декоративных культур. Кое-где сохранились массивы широколиственных лесов…

Анализаторы, органы чувств и их значение

Анализаторы. Все живые организмы, в том числе и человек, нуждаются в информации об окружающей среде. Эту возможность им обеспечивают сенсорные (чувствительные) системы. Деятельность любой сенсорной системы начинается с восприятия рецепторами энергии раздражителя, трансформации ее в нервные импульсы и передачи их через цепь нейронов в мозг, в котором нервные импульсы преобразуются в специфические ощущения - зрительные, обонятельные, слуховые и т. п.

Изучая физиологию сенсорных систем, академик И. П.

Анализаторы человека. Основное органы чувств и их функции

Павлов создал учение об анализаторах. Анализаторами называются сложные нервные механизмы, посредством которых нервная система получает раздражения из внешней среды, а также от органов самого тела и воспринимает эти раздражения в виде ощущений. Каждый анализатор состоит из трех отделов: периферического, проводникового и центрального.

Периферический отдел представлен рецепторами -чувствительными нервными окончаниями, обладающими избирательной чувствительностью только к определенному виду раздражителя. Рецепторы входят в состав соответствующих органов чувств. В сложных органах чувств (зрения, слуха, вкуса) кроме рецепторов есть ивспомогательные структуры, которые обеспечивают лучшее восприятие раздражителя, а также выполняют защитную, опорную и другие функции. Например, вспомогательные структуры зрительного анализатора представлены глазом, а зрительные рецепторы - лишь чувствительными клетками (палочки и колбочки). Рецепторы бывают наружные, расположенные на поверхности тела и воспринимающие раздражения из внешней среды, ивнутренние, которые воспринимают раздражения из внутренних органов и внутренней среды организма,

Проводниковый отдел анализатора представлен нервными волокнами, проводящими нервные импульсы от рецептора в центральную нервную систему (например, зрительный, слуховой, обонятельный нерв и т. п.).

Центральный отдел анализатора - это определенный участок коры головного мозга, где происходит анализ и синтез поступившей сенсорной информации и преобразование ее в специфическое ощущение (зрительное, обонятельное и т. д.).

Обязательным условием нормального функционирования анализатора является целостность каждого из его трех отделов.

Зрительный анализатор

Зрительный анализатор представляет собой совокупность структур, воспринимающих световую энергию в виде электромагнитного излучения с длиной волны 400 — 700 нм и дискретных частиц фотонов, или квантов, и формирующих зрительные ощущения. С помощью глаза воспринимается 80-90% всей информации об окружающем мире.

Благодаря деятельности зрительного анализатора различают освещенность предметов, их цвет, форму, величину, направление передвижения, расстояние, на которое они удалены от глаза и друг от друга. Все это позволяет оценивать пространство, ориентироваться в окружающем мире, выполнять различные виды целенаправленной деятельности.

Наряду с понятием зрительного анализатора существует понятие органа зрения.

Орган зрения — это глаз, включающий три различных в функциональном отношении элемента:

глазное яблоко, в котором расположены световоспринимающий, светопреломляющий и светорегулирующий аппараты;

защитные приспособления, т.е. наружные оболочки глаза (склера и роговица), слезный аппарат, веки, ресницы, брови;

двигательный аппарат, представленный тремя парами глазных мышц (наружная и внутренняя прямые, верхняя и нижняя прямые, верхняя и нижняя косые), которые иннервируются III (глазодвигательный нерв), IV (блоковый нерв) и VI (отводящий нерв) парами черепных нервов.

Внешние анализаторы

Прием и анализ информации осуществляется с помощью анализаторов. Центральной частью анализатора является некоторая зона в коре головного мозга. Периферическая часть-рецепторы, которые находятся на поверхности тела для приема внешней информации, либо во внутренних органах.

внешние сигналы ® рецептор® нервные связи® головной мозг

В зависимости от специфики принимаемых сигналов различают: внешние (зрительный, слуховой, болевой, температурный, обонятельный, вкусовой) и внутренние (вестибулярный, давления, кинестетический) анализаторы.

Основная характеристика анализаторов – чувствительность.

Нижний абсолютный порог чувствительности — минимальная величина раздражителя, на который начинает реагировать анализатор.

Если раздражитель вызывает боль или нарушение деятельности анализатора — это будет верхний абсолютный порог чувствительности. Интервал от минимума до максимума определяет диапазон чувствительности (например для звука от 20 Гц до 20 кГц).

85-90% всей информации о внешней среде человек получает через зрительный анализатор. Прием и анализ информации осуществляется в диапазоне (световом)- 360-760 электромагнитных волн. Глаз может различать 7 основных цветов и более сотни оттенков. Глаз чувствителен к видимому диапазону спектра электромагнитных волн от 0,38 до 0,77 мкм. В этих границах различные диапазоны волн вызывают различные ощущения (цвета) при воздействии на сетчатку:

0,38 — 0,455 мкм — фиолетовый цвет;

0,455 — 0,47 мкм — синий цвет;

0,47 — 0,5 мкм — голубой цвет;

0,5 — 0,55 мкм — зеленый цвет;

0,55 — 0,59 мкм — жёлтый цвет;

0,59 — 0,61 мкм — оранжевый цвет;

0,61 — 0,77 мкм — красный цвет.

Наибольшая чувствительность достигается при длине волн 0,55 мкм

Минимальная интенсивность светового воздействия, вызывающая ощущение. адаптации зрительного анализатора. К временным характеристикам восприятия сигналов относится: латентный период- время от подачи сигнала до момента возникновения ощущения 0,15-0,22 с.; порог обнаружения сигнала при большей яркости-0,001 с, при длительности вспышки-0,1 с.; неполная темновая адаптация- от нескольких секунд до нескольких минут.

С помощью звуковых сигналов человек получает до 10% информации. Слуховые сигналы применяются для сосредоточенного внимания человека, для передачи информации, для разгрузки зрительной системы. Особенностями слухового анализатора являются:

— способность быть готовым к приему информации в любой момент времени;

— способность воспринимать звуки в широком диапазоне частот и выделять необходимые;

— способность устанавливать с точностью месторасположение источника звука.

Воспринимающая часть слухового анализатора — ухо, которое делится на три отдела: наружное, среднее и внутреннее. Звуковые волны, проникая в наружный слуховой проход, приводят в колебания барабанную перепонку и через цепь слуховых косточек передаются в полость улитки внутреннего уха. Колебания жидкости в канале приводит в движение волокна основной перепонки в резонанс звукам, поступающим в ухо. Колебания волокон улитки приводят в движение расположенные в них клетки кортиева органа, возникает нервный импульс, который передаётся в соответствующие отделы коры головного мозга. Порог болевых ощущений 130 — 140 дБ.

Кожный анализатор обеспечивает восприятие прикосновения, боли, тепла, холода, вибрации.

Анализаторы человека и их основные характеристики.

Одна из основных функций кожи- защитная (от механических, химических повреждений, от патогенных микроорганизмов и др). Важной функцией кожи является ее участие в терморегуляции 80% всей теплоотдачи организма осуществляется кожей. При высокой температуре внешней среды кожные сосуды расширяются (теплотдача усиливается), при низкой температуре сосуды суживаются (теплотдача уменьшается). Обменная функция кожи заключается в участии в процессах регуляции общего обмена веществ в организме (водного, минерального, углеводного). Секреторная функция обеспечивается сальными и потовыми железами. С кожным салом могут выделяться эндогенные яды, микробные токсины.

Обонятельный анализатор предназначен для восприятия человеком различных запахов (диапазон до 400 наименований).Рецепторы расположены на слизистой оболочки в носовой полости. Условиями восприятия запахов являются летучесть пахучего вещества, растворимость веществ. Запахи могут сигнализировать человека о нарушениях технологических процессов.

Существуют четыре вида вкусовых ощущений: сладкий, кислый, горький, соленый, остальные их комбинации. Абсолютные пороги вкусового анализатора в 1000 раз выше чем обонятельного. Механизм восприятия вкусовых ощущений связан с химическими реакциями. Предполагают, что каждый рецептор содержит высокочувствительные белковые вещества, распадающиеся при воздействии определённых вкусовых веществ.

Чувствительность вкусового анализатора груба, в среднем составляет 20%. Восстановление вкусовой чувствительности после воздействия различных раздражителей заканчивается через 10-15 минут

За восприятие и анализ внешних раздражителей отвечают анализаторы человека, являющиеся подсистемой центральной нервной системы (ЦНС). Сигналы воспринимаются рецепторами - периферийной частью анализатора, а обрабатываются мозгом - центральной частью.

Отделы

Анализатор - это совокупность нейронов, которую часто называют сенсорной системой. Любой анализатор имеет три отдела:

  • периферический - чувствительные нервные окончания (рецепторы), которые входят в состав органов чувств (зрение, слух, вкус, осязание);
  • проводниковый - нервные волокна, цепочка разных типов нейронов, проводящих сигнал (нервный импульс) от рецептора к центральной нервной системе;
  • центральный - участок коры головного мозга, анализирующий и преобразовывающий сигнал в ощущение.

Рис. 1. Отделы анализаторов.

Каждому специфичному анализатору соответствует определённый участок коры головного мозга, который называется корковым ядром анализатора.

Виды

Рецепторы, а соответственно и анализаторы, могут быть двух видов :

  • внешние (экстероцепторы) - располагаются около или на поверхности тела и воспринимают раздражители внешней среды (свет, тепло, влажность);
  • внутренние (интероцепторы) - находятся в стенках внутренних органов и воспринимают раздражители внутренней среды.

Рис. 2. Расположение центров восприятия в головном мозге.

Шесть типов внешнего восприятия описаны в таблице “Анализаторы человека”.

Анализатор

Рецепторы

Проводящие пути

Центральные отделы

Зрительный

Фоторецепторы сетчатки глаза

Зрительный нерв

Затылочная доля коры больших полушарий

Слуховой

Волосковые клетки спирального (кортиева) органа улитки

Слуховой нерв

Верхняя извилина височной доли

Вкусовой

Рецепторы языка

Языкоглоточный нерв

Передний отдел височной доли

Осязательный

Рецепторные клетки: - на голой коже - тельца Мейснера, залегающие в сосочковом слое кожи;

На волосяной поверхности - рецепторы волосяного фолликула;

Вибрации - тельца Пачини

Скелетно-мышечные нервы, спиной, продолговатый, промежуточный мозг

Обонятельный

Рецепторы полости носа

Обонятельный нерв

Передний отдел височной доли

Температурный

Тепловые (тельца Руффини) и холодовые (колбы Краузе) рецепторы

Миелиновые (холод) и безмиелиновые (тепло) волокна

Задняя центральная извилина теменной доли

Рис. 3. Расположение рецепторов в коже.

К внутренним относят рецепторы давления, вестибулярный аппарат, кинестетические или двигательные анализаторы.

ТОП-4 статьи которые читают вместе с этой

Мономодальные рецепторы воспринимают один тип раздражения, бимодальные - два типа, полимодальные - несколько типов. Например, мономодальные фоторецепторы воспринимают только свет, осязательные бимодальные - боль и тепло. К полимодальным относится подавляющее большинство болевых рецепторов (ноцицепторов).

Характерные особенности

Анализаторы, вне зависимости от типа, обладают рядом общих свойств :

  • высокая чувствительность к раздражителям, ограничивающаяся пороговой интенсивностью восприятия (чем ниже порог, тем выше чувствительность);
  • различность (дифференциация) чувствительности, позволяющая выделять раздражители по интенсивности;
  • адаптация, позволяющая приспосабливать уровень чувствительности к сильным раздражителям;
  • тренировка, проявляющаяся как в снижении чувствительности, так и в её повышении;
  • сохранение восприятия после прекращения действий раздражителя;
  • взаимодействие разных анализаторов друг с другом, позволяющее воспринимать полноту внешнего мира.

Примером особенности работы анализатора может служить запах краски. Люди с низким порогом чувствительности к запахам будут ощущать запах сильнее и активно реагировать (слезотечение, тошнота), чем люди с высоким порогом. Сильный запах анализаторы будут воспринимать интенсивнее, чем другие окружающие запахи. Со временем запах не будет ощущаться резко, т.к. произойдёт адаптация. Если постоянно находиться в помещении с краской, то чувствительность притупится. Однако выйдя из помещения на свежий воздух, некоторое время будет ощущаться, «мерещиться» запах краски.

Что мы узнали?

Из статьи по биологии для 8 класса узнали об отделах, типах, строении и функциях анализаторов - системы, воспринимающей и проводящей сигналы внешней и внутренней среды. Анализаторы имеют общие особенности и выполняют функции проводников от источника раздражения до ЦНС.

Тест по теме

Оценка доклада

Средняя оценка: 4.5 . Всего получено оценок: 265.

Анализаторы человека – это функциональные нервные образования, обеспечивающие приём и последующую переработку информации, полученную из внутренней среды и наружного мира. Анализаторы человека, образующие единство со специализированными структурами – органами чувств, способствующими в получении информации, называют сенсорной системой.

Сенсорные анализаторы человека связывают индивида со средой с помощью проводящих нервных путей, рецепторов и расположенного в коре головного мозга мозгового конца. Выделяют внешние и внутренние анализаторы человека. К внешним относят зрительный, тактильный, обонятельный, слуховой, вкусовой анализатор. Внутренние анализаторы человека отвечают за состояние и положение внутренних органов.

Виды анализаторов человека

Сенсорные анализаторы человека подразделяются на виды в зависимости от чувствительности рецепторов, природы раздражителя, характера ощущений, скорости адаптации, назначения и так далее.

Внешние анализаторы человека получают данные от мира и в дальнейшем их анализируют. Они воспринимаются человеком субъективно под видом ощущений.

Выделяют такие виды внешних анализаторов человека: зрительный, обонятельный, слуховой, вкусовой, осязательный и температурный.

Внутренние анализаторы человека воспринимают и подвергают анализу видоизменения во внутренней среде, показателях гомеостазиса. Если показатели организма в норме, то они не воспринимаются человеком. Только отдельные изменения организма способны вызвать у человека ощущения, как например, жажду, голод, которые основываются на биологических потребностях. Для их удовлетворения и возобновления стабильности организма включаются определенные поведенческие реакции. Импульсы участвуют в регуляции функционирования внутренних органов, они обеспечивают приспособление организма к его разнообразной жизнедеятельности.

Анализаторы, отвечающие за положение тела, подвергают анализу данные о нахождении и положении тела. К анализаторам, отвечающим за положение тела, относят вестибулярный аппарат и двигательный (кинестетический).

Болевой анализатор человека представляет особенную важность для организма. Болевые сигналы организма доставляют человеку сигналы о том, что возникают повреждающие действия.

Характеристика анализаторов человека

Основой в характеристике анализатора является его чувствительность, которая характеризует порог ощущения человека. Выделяют два вида порогов ощущения – это абсолютный и дифференциальный.

Абсолютный порог ощущения характеризует минимальную силу раздражения, которая вызывает определенную реакцию.

Дифференциальный порог ощущения описывает между двумя величинами раздражителя минимальное различие, едва дающее заметное различие ощущений.

Величина ощущений меняется гораздо медленнее, чем сила раздражителя.

Существует еще понятие латентного периода, которое описывает время от начала воздействия до возникновения ощущений.

Зрительный анализатор человека помогает человеку принимать до 90% данных об окружающем мире. Воспринимающим органом является глаз, который имеет очень высокую чувствительность. Изменения зрачка в размерах позволяют человеку менять чувствительность многократно. Сетчатка глаза обладает очень высокой восприимчивостью от 380 до 760 нанометров (миллиардных долей метра).

Бывают ситуации, при которых приходится учитывать время, необходимое для адаптации глаз в пространстве. Световая адаптация – это привыкание анализатора к сильной освещенности. В среднем адаптация занимает от двух минут до десяти, в зависимости от яркости света.

Темновая адаптация – это адаптация зрительного анализатора к плохой освещенности, в некоторых случаях она происходит по истечении некоторого времени. Во время такой зрительной адаптации человек становится уязвимым и пребывает в состоянии опасности. Поэтому в таких ситуациях необходимо быть очень внимательными.

Зрительный анализатор человека характеризуется остротой – наименьшим углом, под которым можно воспринять две точки, как раздельные. На остроту влияет контрастность, освещенность и другие факторы.

Ощущение, возбуждающееся световым сигналом, сберегается в течение 0, 3 секунд за счет инерции. Инерция зрительного анализатора формирует стробоскопический эффект, который выражается в ощущениях непрерывности движений, когда частота смены изображений составляет десять раз в секунду. Это создает оптические иллюзии.

Зрительный анализатор человека состоит из светочувствительных образований – палочек и колбочек. С помощью палочек человек способен видеть ночь, темноту, но такое зрение бесцветное. В свою очередь колбочки обеспечивают цветное изображение.

Каждый человек должен понимать всю серьезность в отклонениях в восприятии цвета, поскольку они могут привести к неблагоприятным последствиям. Среди таких отклонений чаще всего встречаются: дальтонизм, цветовая слепота, гемералопия. Дальтоники не различают зеленый и красный цвета, иногда фиолетовый и желтый, которые им кажутся серыми. Человек, у которого цветовая слепота, видит все цвета серыми. У индивида страдающего гемералопией отсутствует способность к видению при сумрачном освещении.

Тактильный анализатор человека обеспечивает ему защитно-оборонительную функцию. Воспринимающим органом является кожа, она обороняет организм от попадания на нее химических веществ, служит защитным барьером в ситуации прикосновения кожи тела с электрическим током, является регулятором температуры тела, оберегает человека от переохлаждения или перегрева.

Если у человека нарушается от 30 до 50 процентов кожного покрова и не предоставляется медицинская помощь, то он в скором времени погибает.

Кожа человека состоит из 500 тысяч точек, воспринимающих ощущения действия на кожную поверхность механических стимулов, боли, тепла, холода.

Особенность тактильного анализатора заключается в его высокой приспособляемости к пространственной локализации. Это выражается в исчезновении чувства прикосновения. кожного покрова зависит от интенсивности раздражителя, она может происходить на протяжении от двух до двадцати секунд.

Анализатор ощущения температурной чувствительности свойствен организмам, имеющим постоянную температуру тела. На человеческой коже размещаются два вида температурных анализаторов: анализаторы, реагирующие на холод и реагирующие – на тепло. Кожа человека состоит из 30 тысяч точек тепла и 250 точек, воспринимающих холод. При восприятии тепла и холода существуют различные пороги чувствительности, тепловые точки реагируют на изменения температуры в 0,2°С; точки, воспринимающие холод на 0,4°С. Температура начинает ощущаться уже за одну секунду ее воздействия на тело. С помощью анализаторов температурной чувствительности сохраняется неизменная температура тела.

Анализатор обоняния человека представлен органом ощущения – носом. Существует приблизительно 60 миллионов клеток, которые размещаются в слизистой оболочке носа. Эти клетки покрыты волосками, длиной 3-4 нанометра, они являются защитным барьером. Нервные волокна, уходящие от обонятельных клеток, отсылают сигналы о воспринятых запахах в центры мозга. Если человек ощущает запах вещества, опасного для его здоровья (нашатырный спирт, эфир, хлороформ и другие), он рефлекторно замедляет или задерживает дыхание.

Анализатор восприятия вкуса представлен специальными клетками, находящимися на слизистой оболочке языка. Ощущения вкуса могут быть: сладким, кислым, солёным и горьким, также их комбинации.

Ощущения вкуса играют защитную роль в предупреждении попадания опасного для здоровья или жизни вещества в организм. Индивидуальные восприятия вкуса могут варьироваться до 20%. Чтобы обезопасить себя от попадания вредных веществ в организм необходимо: попробовать незнакомую пищу, как можно дольше продержать ее во рту, очень медленно прожёвывать, прислушиваться к собственным ощущениям и вкусовым реакциям. После этого решать: глотать еду или нет.

Ощущение человеком мышц происходит за счет специальных рецепторов, они называются проприорецепторами. Они передают сигналы в центры мозга, сообщая о состоянии мышц. В ответ на эти сигналы, мозг направляет импульсы, которые координируют работу мышц. Учитывая влияние гравитации, мышечное чувство «работает» стабильно. Поэтому человек способен принимать удобную для себя позу, которая имеет большое значение в работоспособности.

Болевая чувствительность человека имеет защитную функцию, она предупреждает об опасности. После поступления сигнала о боли начинают действовать оборонительные рефлексы, как например, удаление организма от раздражителя. При ощущении боли перестраивается деятельность всех систем организма.

Боль воспринимается всеми анализаторами. Когда превышается порог допустимой нормы чувствительности, возникает ощущение боли. Имеются также специальные рецепторы – болевые. Боль может нести опасность, болевой шок осложняет деятельность организма и функцию самовосстановления.

Функции слухового анализатора человека заключаются в возможности воспринимать мир, который наполнен звуками во всей его полноте. Некоторые звуки являются сигналами и предупреждают человека об опасности.

Звуковую волну характеризует интенсивность и частота. Человек их воспринимает, как громкость звука. Слуховой анализатор человека представлен внешним органом – ухом. Ухо является сверхчувствительным органом, оно может улавливать изменения давления, которые поступают от поверхности земли. Строение уха разделяется на наружное, среднее и внутреннее. Оно воспринимает звуки и сохраняет равновесие тела. С помощью ушной раковины улавливаются и определяются звуки, их направление. Барабанная перепонка под воздействием звукового давления колышется. Сразу за перепонкой имеется среднее ухо, еще дальше внутреннее ухо, в котором находится специфическая жидкость, и два органа — вестибулярный аппарат и орган слуха.

В органе слуха находится примерно 23 тысячи клеток, являющихся анализаторами, в которых звуковые волны переходят в нервные импульсы, устремляющиеся в мозг человека. Ухо человека способно воспринимать от 16 герц (Гц) до 2 кГц. Звуковая интенсивность измеряется в белах и децибелах.

Человеческое ухо владеет важной и специфической функцией – бинауральным эффектом. Благодаря бинауральному эффекту человек может определить, с какой стороны к нему поступает звук. Звук, направляется в ушную раковину, которая обращена к его источнику. У человека с одним глухим ухом бинауральный эффект бездействует.

Вибрационная чувствительность также является не менее важной, чем различные сенсорные анализаторы человека. Влияние вибраций может быть очень вредным. Они являются локальными раздражителями и наносят повреждающее воздействие на ткани и находящиеся в них рецепторы. Рецепторы имеют связь с ЦНС, их воздействие оказывает влияние на все системы организма.

Если частота механических колебаний низкая (до десяти герц), тогда вибрации распространяются по всему организму независимо от места нахождения источника. Если такое низкочастотное воздействие происходит очень часто, тогда под негативным влиянием находятся мышцы человека, которые быстро поражаются. Когда на организм воздействуют высокочастотные вибрации, то ограничивается зона их распространения в месте контакта. Это вызывает изменения в кровеносных сосудах, и часто может вызвать нарушения функционирования сосудистой системы.

Вибрации оказывают действие на сенсорную систему. Вибрации общего действия, ухудшают зрение и его остроту, ослабевают светочувствительность глаз и ухудшают функционирование вестибулярного аппарата.

Локальные вибрации снижают тактильную, болевую, температурную и проприоцептивную чувствительность человека. Такие разносторонние негативные воздействия на организм человека приводят к серьезным и тяжелым изменениям в деятельности организма и способно вызвать заболевание под названием виброболезнь.

Анализаторы выполняют большое количество функций или операций с сигналами. Среди них важнейшие:

    Обнаружение сигналов.

    Различение сигналов.

    Передача и преобразование сигналов.

    Кодирование поступающей информации.

    Детектирование тех или иных признаков сигналов.

    Опознание образов.

Обнаружение и различие сигналов (I, II) обеспечивается, прежде всего рецепторами, а детектирование и опознание (V, VI) сигналов высшими корковыми уровнями анализаторов. Между тем передача, преобразование и кодирование (III, IV) сигналов свойственны всем слоям анализаторов.

Обнаружение сигналов начинается в рецепторах – специализированных клетках, эволюционно приспособленных к восприятию из внешней или внутренней среды организма того или иного раздражителя и преобразованию его из физической или химической формы в форму нервного возбуждения.

Классификация рецепторов.

Все рецепторы разделяют на две большие группы: внешние, или экстерорецепторы , и внутренние, или интерорецепторы . К экстерорецепторам относятся: слуховые, зрительные, обонятельные, вкусовые, осязательные рецепторы, к интерорецепторам – висцерорецепторы (сигнализирующие о состоянии внутренних органов), вестибуло- и проприорецепторы (рецепторы опорно-двигательного аппарата).

По характеру контакта со средой рецепторы делятся на дистантные , получающие информацию на некотором расстоянии от источника раздражения (зрительные, слуховые и обонятельные) и контактные – возбуждающиеся при непосредственном соприкосновении с ним.

В зависимости от природы раздражителя, на который они оптимально настроены, рецепторы человека могут быть разделены на:

    Механорецепторы , к которым относятся рецепторы слуховые, гравитационные, вестибулярные, тактильные рецепторы кожи, рецепторы опорно-двигательного аппарата, барорецепторы сердечно-сосудистой системы.

    Хеморецепторы, включающиеся рецепторы вкуса и обоняния, сосудистые и тканевые рецепторы.

    Фоторецепторы.

    Терморецепторы (кожи и внутренних органов, а также центральные термочувствительные нейроны).

    Болевые (ноцицептивные) рецепторы, кроме которых болевые раздражения могут восприниматься и другими рецепторами.

Все рецепторные аппараты делятся на первичночувствующие (первичные) и вторичночувствующие (вторичные). К первым относятся рецепторы обоняния, тактильные рецепторы и проприорецепторы. Они отличаются тем, что восприятие и преобразование энергии раздражения. В энергию нервного возбуждения происходит у них в самом чувствительном нейроне. К вторичночувствующим относятся рецепторы вкуса, зрения, слуха, вестибулярного аппарата. У них между раздражителями и первым чувствительным нейроном находится высокоспециализированная рецепторная клетка, т.е. первый нейрон возбуждается не непосредственно, а через рецепторную (не нервную) клетку.

По своим основным свойствам рецепторы делятся также на быстро- и медленноадаптирующиеся, низко- и высокопороговые, мономодальные и полимодальные и т.д.

Адаптация анализаторов.

Анализатор работает как единая система, все звенья которой взаимосвязаны и взаимно регулируют друг друга. Состояние практически всех уровней анализатора контролируется (прямо или опосредованно) ретикулярной формацией, включающей их единую систему, интегрированную с другими отделами мозга и организма в целом. В этой интегративной деятельности особую роль приобретает адаптация анализаторов – их общее свойство, заключающееся в приспособлении всех их звеньев к постоянной интенсивности длительно действующего раздражителя. Адаптация проявляется, во-первых, в снижении абсолютной чувствительности анализатора, и, во-вторых, повышении дифференциальной чувствительности к стимулам, близким по силе к адаптирующему.

Адаптационные процессы начинаются на уровне рецепторов, охватывая все нейронные уровни анализатора. Адаптация заметно не изменяется только в вестибуло- и проприорецепторах. По скорости данного процесса все рецепторы делятся на быстро- и медленноадаптирующиеся. Первые после развития адаптационного процесса практически вообще не сообщают следующему за ними нейрону о длящемся раздражении, у вторых эта информация передается, хотя и в значительно уменьшенном виде. Когда действие постоянного раздражителя прекращается, чувствительность анализаторов повышается. Такова причина повышения световой чувствительности нашего глаза в темноте.

Эфферентная регуляция физиологических свойств анализатора проявляется изменением (настройкой) рецепторов и свойств нервных элементов анализаторов для оптимального восприятия внешних сигналов.

Давно известен комплекс реакций (например, изменение положения тела или головы, глаз и ушных раковин по отношению к источнику звукового раздражения), оптимизирующих условия восприятия сигналов.

В настоящее время получено много данных о преобразовании афферентного потока, идущего от рецепторов к высшим чувствительным центрам, под воздействием эфферентного контроля со стороны ЦНС. Этот контроль затрагивает элементы всех без исключения уровней анализатора, доходя до рецепторных аппаратов. Пути реализации эфферентных воздействий различны: изменение кровоснабжения рецепторов, влияние на мышечный тонус вспомогательных структур рецепторных аппаратов, на состояние самих рецепторов и нервных элементов следующих уровней. Эфферентные влияния в анализаторах чаще всего имеют тормозной характер, т.е. приводят к уменьшению их чувствительности и ограничивают поток афферентных сигналов.

Общее число афферентных нервных волокон, приходящих к рецепторам или к элементам какого-либо нервного слоя анализатора, как правило, в десятки раз меньше числа афферентных нейронов, расположенных на том же уровне. Это определяет важную функциональную особенность эфферентного контроля, который имеет не тонкий и локальный, а достаточно широкий и диффузный характер. Речь идет об общем снижении чувствительности значительной части рецепторной поверхности.

В целом анализаторы представляют собой совокупность взаимодействующих образований периферической и центральной нервной системы, которые осуществляют восприятие и анализ информации о явлениях, происходящих как в окружающей среде, так и внутри самого организма. Все анализаторы в структурном отношении принципиально однотипны. Они имеют на своей периферии воспринимающие аппараты - рецепторы, в которых и происходит превращение энергии раздражителя в процесс возбуждения. От рецепторов по сенсорным (чувствительным) нейронам и синапсам (контактам между нервными клетками) поступают в центральную нервную систему (рис. 1).

Различают следующие основные виды рецепторов. Механорецепторы, которые воспринимают механическую энергию. К ним относятся рецепторы: слуховой, вестибулярной, двигательной, тактильной, частично висцеральной чувствительности. И хеморецепторы - обоняние, вкус. Терморецепторы, которые имеют кожаный анализатор. Фоторецепторы - зрительный анализатор, и другие виды. Каждый рецептор выделяет из множества раздражителей внешней и внутренней среды свой адекватный раздражитель. Этим и объясняется очень высокая чувствительность рецепторов.

3. Свойства анализаторов

Все анализаторы, благодаря своему однотипному строению, имеют общие психофизиологические свойства:

1. Чрезвычайно высокую чувствительность к адекватным раздражителям. Эта чувствительность близка к теоретическому пределу и в современной технике пока что не достигнута. Количественной мерой чувствительности является предельная интенсивность, то есть наименьшая интенсивность раздражителя, воздействие которой дает ощущение.

2. Абсолютный, дифференциальный и оперативный пределы чувствительности к раздражителю. Абсолютный предел имеет верхний и нижний уровни. Нижний абсолютный предел чувствительности - это минимальный размер раздражителя, который вызывает чувствительность. Верхний абсолютный предел - максимально допустимая величина раздражителя, который не вызывает у человека боль.

Дифференциальная чувствительность определяется наименьшим размером, на котором стоит изменить силу раздражителя, чтобы вызывать минимальное изменение ощущения. Это положение впервые было введено немецким физиологом Э. Вебером и количественно описано немецким физиком Г. Фехнером.

Каждое ощущение, кроме качества, непременно имеет определенную меру интенсивности, или силы. Представляется интересным выяснить, какое взаимоотношение между интенсивностью ощущения и интенсивностью раздражения. Возможно, что интенсивность ощущения или абсолютно не связанная с интенсивностью раздражения, или, напротив, она является прямым отражением этого последнего, или же, наконец, между ними есть специфическая взаимосвязь, которая подчиняется определенной закономерности.

Решить этот вопрос невозможно ни путем простого наблюдения, ни на основе того или другого теоретического рассуждения. В этом случае дать что-либо значимое может только эксперимент. Поэтому неудивительно, что первый шаг, сделанный на пути научного решения этого вопроса, носил экспериментальный характер; в то же время, это был тот первый психологический вопрос, решить которое попробовали путем эксперимента.

История экспериментальной психологии начинается с того времени, когда физиолог Э. Вебер поставил вопрос о соотношении между ощущением и раздражением, то есть между психическим и физическим, с точки зрения их интенсивности. В последующем опыты Э. Вебера продолжил физик Г. Фехнер, окончательно заложив тем самым основы той части психологии, которая известна под названием психофизики и которая в течение нескольких десятилетий считалась наиболее интересной и более важной отраслью психологии.

Так, что же выяснилось о взаимосвязи между ощущением и раздражением с точки зрения их интенсивности?

Во-первых, окончательно подтвердились наблюдения, которые свидетельствуют о том, что человек чувствует вовсе не любое изменение раздражения, а чувствует лишь раздражение относительно большой интенсивности. Во-вторых, в результате точных исследований был найденный закон, который лежит в основе соотношения между интенсивностями раздражения и ощущения.

Для понимания данного закона особенно важным является понятие так называемого порога, установленное в процессе психофизических исследований.

Выяснилось, что интенсивность раздражения должна достичь определенного уровня с тем, чтобы мы хоть как-то почувствовали его действие. Уровень раздражения, которое дает такое едва заметное ощущение, называется нижним порогом ощущения. Однако существуют и такой уровень интенсивности раздражения, после увеличения которого, интенсивность ощущения уже не усиливается. Этот уровень называется верхним порогом ощущения. Действие раздражения мы чувствуем только в интервале между этими порогами, поэтому их принято называть внешними порогами ощущения .

Примечательно, что полного параллелизма между интенсивностями ощущения и раздражения не существует и в межпороговом интервале интенсивностей. Например, беря в руки книгу, мы, понятно, чувствуем ее вес. Следовательно, в данном случае интенсивность ее веса находится в промежутке между нижним и верхним порогами. А теперь заложим в книгу лист бумаги; физически вес книги увеличился, то есть уровень интенсивности раздражения повысился. Однако, взяв книгу в руки, мы это изменение веса не почувствуем. Увеличение веса должно достичь определенного уровня, чтобы мы могли это как-то заметить. Величина прироста раздражения, необходимого для получения этого едва заметного отличия между ощущениями, называется порогом различения .

Раздражение, которое превышает эту величину по интенсивности, называется запороговым, а раздражение с меньшей интенсивностью - допороговым. Уровень порога различения (высокий или низкий) зависит от чувствительности к различению: чем выше чувствительность к различению, тем ниже порог различения.

Э. Вебер первым обратил внимание (1834) на то, что порог различения бывает двояким - абсолютным и релятивным и что очень важно отличать их один от другого. Абсолютным порогом различения называется прирост интенсивности раздражения, необходимый для достижения порога различения. Например, если для того, чтобы почувствовать едва заметное изменение 2000-грамового веса, к нему необходимо прибавить 200 граммов, и тогда эта величина является абсолютным порогом ощущения. Показатель абсолютного порога не является постоянной величиной и зависит от веса основного раздражителя. Например, если к основному раздражителю весом в 2000 граммов следует добавить 200 грамм, то в случае раздражителя весом 4000 граммов 200 граммов уже недостаточно - к нему надо добавить больше.

Если эту же величину (в нашем примере - 200 граммов) выразить не в твердых физических единицах измерения (граммах), а числом, которое выражает отношение между дополнительным раздражением и основным раздражением, то получим релятивный порог различения . В нашем примере вес основного раздражителя составлял 2000 граммов, а дополнительного - 200 граммов; отношение между ними составляет

Следовательно, релятивный порог равняется 0,1. Когда Э. Вебер вычислил релятивный порог различения для разных случаев основного раздражения, выяснилось, что этот порог является константной величиной. В области модальности веса он равняется 0,1. Это значит, что для того, чтобы почувствовать едва заметное изменение веса, его надо увеличить или уменьшить на одну десятую часть.

Именно в этом заключается известный основной психофизический закон Э. Вебера, который сыграл такую значительную роль в истории психологии.

Основной психофизический закон физиологии Вебера-Фехнера: интенсивность ощущений пропорциональна логарифму интенсивности раздражений. В математической форме закон Вебера - Фехнера выражается так:

где p - интенсивность (или сила) ощущения;

S - значение интенсивности действующего раздражителя;

S 0 - нижнее предельное значение интенсивности действующего раздражителя: если 𝑆<𝑆 0 , раздражитель вовсе не ощущается;

K - константа, зависящая от субъекта ощущения.

Графически закон Вебера-Фехнера отображается в виде графика функции y = log 2 x (рис. 2).

Рис. 2. Графическое отображение закона Вебера-Фехнера

3. Возможность к адаптации, то есть возможность приспосабливать уровень своей чувствительности к раздражителям . При высокой интенсивности раздражителей чувствительность снижается и, напротив, при низких - повышается. Это достаточно часто мы встречаем в повседневной жизни, и это не нуждается в комментариях.

4. Возможность тренироваться . Данное свойство выражается как в повышении чувствительности, так и ускорении адаптации (например, часто говорят о музыкальном слухе, чувствительные органы дегустаторов и т. д.).

5. Возможность определенное время сохранять ощущение после прекращения действия раздражителя . Например, человек может возобновить в своем сознании на короткое мгновение увиденную характеристику или услышанные звуковые интонации. Такая "инерция" ощущений определяется как следствие. Длительность последовательного образа значительно зависит от интенсивности раздражителя и в некоторых случаях даже ограничивает возможность анализатора.

6. Постоянное взаимодействие друг с другом . Известно, что окружающий нас мир многогранен, и только благодаря взаимодействию анализаторов осуществляется полное восприятие человеком объектов и явлений внешней среды.

В повседневной жизни мы постоянно сталкиваемся с проявлением закона Вебера-Фехнера. Например, тень от свечи незаметна при свете солнца, при сильном шуме мы не слышим тихих звуков и тому подобное. Такая реакция человеческого организма обусловлена процессом тысячелетнего отбора, в ходе которого наше сознание воспроизвело мощную систему самосохранения и самозащиты организма. Если бы организм человека фиксировал все без исключения внешние раздражители, то была бы потеряна защитная реакция всей нервной системы. Именно поэтому внешние раздражители фиксируются не по их абсолютной величине, а только по относительной.

Существует порог, запрещенная граница внешнего влияния на организм человека, в пределах которого происходят ее физическая и психическая деградация вплоть до полного разрушения генофонда. Такие явления наблюдаются в зонах стихийного бедствия.