Какие величины называются постоянными и переменными. Предел переменной величины

Какие величины называются постоянными и переменными. Предел переменной величины
Какие величины называются постоянными и переменными. Предел переменной величины

То избавьтесь и от него, возведя обе части тождества в , равную показателю корня. Для примера, приведенного выше, это действие должно выразиться в преобразовании к такому виду: 36*Y² = X. Иногда операцию этого шага удобнее произвести до действия из шага предыдущего.

Преобразуйте выражение таким образом, чтобы все члены тождества, содержащие нужную переменную , оказались в левой части равенства. Например, если формула имеет вид 36*Y-X*Y+5=X и вас интересует переменная X, достаточно будет поменять местами левую и правую половины тождества. А если выразить нужно Y, то формула в результате этого действия должна приобрести вид 36*Y-X*Y=X-5.

Упростите выражение в левой части формулы так, чтобы искомая переменная стала одним из . Например, для формулы из предыдущего шага это можно сделать так: Y*(36-X)=X-5.

Разделите выражения по обе знака равенства на сомножители интересующей вас переменной. В результате в левой части тождества должна остаться только эта переменная. Использованный выше после этого шага приобрел бы такой вид: Y = (X-5)/(36-X).

Если искомая переменная в результате всех преобразований будет возведена в какую в степень, то избавьтесь от степени извлечением корня из обеих частей формулы . Например, формула из второго шага к этому этапу преобразований должна прибрести вид Y²=X/36. А ее окончательный вид должен стать таким: Y=√X/6.

Переменные

Основным показателем переменной является то, что она записывается , а буквой. Под условным обозначением чаще всего скрывается определенное значение. Переменная получила свое название благодаря тому, что ее значение меняется в зависимости от уравнения. Как правило, любая может быть использована в качестве обозначения для такого элемента. Например, если вы знаете, что у вас есть 5 рублей и вы хотите купить яблоки, которые стоят 35 копеек, конечное количество яблок, которые можно купить, (например «С»).

Пример использования

Если есть переменная, которая была выбрана по вашему усмотрению, необходимо составить алгебраическое уравнение. Оно будет связывать между собой известные и неизвестные величины, а также показывать связь между ними. Это выражение будет включать в себя цифры, переменные и одну алгебраическую операцию. Важно отметить, что выражение будет содержать знак равенства.

Полное уравнение содержит значение выражения в целом. Оно отделено от остального уравнения знаком равенства. В предыдущем примере с яблоками 0.35 или 35 копеек, умноженные на «С», является выражением. Для того чтобы создать полное уравнение, необходимо записать следующее:

Мономиальные выражения

Существуют две основные классификации выражений: одночлены . Мономы являются единичной переменной, числом или произведением переменной и числа. Кроме того, выражение из нескольких переменных или выражений с показателями также является мономом. Например, число 7, переменная х, и произведение 7*x - это моном. Выражения с показателями, в том числе x^2 или 3x^2y^3 также одночлены.

Полиномы

Полиномы являются выражениями, которые включают комбинацию из сложения или вычитания двух или более . Любой тип одночленов, в том числе цифр, отдельных переменных или выражений с числами и неизвестными, могут быть включены в полином. Например, выражение х+7 является многочленом, который складывают вместе моном х и моном 7. 3x^2 - также многочлен. 10x+3xy-2y^2 – многочлена, который сочетает три одночлена с использованием сложения и вычитания.

Зависимые и независимые переменные

В независимыми переменными являются неизвестные, которые определяют другие части уравнения. Они стоят отдельно в выражениях и не изменяются вместе с другими переменными.

Значения зависимых переменных определяются с помощью независимых. Их значения зачастую определяются эмпирически.

Значение переменных в математике велико, ведь за время ее существования ученые успели совершить множество открытий в данной области, и, чтобы кратко и ясно изложить ту или иную теорему, мы пользуемся переменными для записи соответствующих формул. Например, теорема Пифагора о прямоугольном треугольнике: a 2 = b 2 + c 2 . Чем каждый раз при решении задачи писать: по теореме Пифагора - мы записываем это формулой, и все сразу становится понятно.

Итак, в этой статье пойдет речь о том, что такое переменные, об их видах и свойствах. Также будут рассмотрены разные неравенства, формулы, системы и алгоритмы их решения.

Понятие переменной

Для начала узнаем, что такое переменная? Это численная величина, которая может принимать множество значений. Она не может быть постоянной, так как в разных задачах и уравнениях для удобства решения мы принимаем за переменную разные числа, то есть, например, z - это общее обозначение для каждой из величин, за которые ее принимают. Обычно их обозначают буквами латинского или греческого алфавита (x, y, a, b и так далее).

Есть разные виды переменных. Ими задаются как некоторые физические величины - путь (S), время (t), так и просто неизвестные значения в уравнениях, функциях и других выражениях.

Например, есть формула: S = Vt. Здесь переменными обозначаются определенные величины, имеющие отношение к реальному миру - путь, скорость и время.

А есть уравнение вида: 3x - 16 = 12x. Здесь уже за x принимается абстрактное число, которое имеет смысл в данной записи.

Виды величин

Под величиной имеется в виду то, что выражает свойства определенного предмета, вещества или явления. К примеру, температура воздуха, масса животного, процентное содержание витаминов в таблетке - это все величины, числовые значения которых можно вычислить.

Для каждой величины есть свои единицы измерения, которые все вместе образуют систему. Ее называют системой исчисления (СИ).

Что такое переменные и постоянные величины? Рассмотрим их на конкретных примерах.

Возьмем прямолинейное равномерное движение. Точка в пространстве движется с одинаковой скоростью на каждом промежутке времени. То есть изменяются время и расстояние, а скорость остается одинаковой. В данном примере время и расстояние - переменные величины, а скорость - постоянная.

Или, например, “пи”. Это иррациональное число, которое продолжается без повторяющейся последовательности цифр и не может быть записано полностью, поэтому в математике оно выражается общепринятым символом, который принимает только значение данной бесконечной дроби. То есть “пи” - это постоянная величина.

История

История обозначения переменных начинается в семнадцатом веке с ученого Рене Декарта.

Известные величины он обозначил первыми буквами алфавита: a, b и так далее, а для неизвестных предложил использовать последние буквы: x, y, z. Примечательным является то, что такие переменные Декарт считал неотрицательными числами, а при столкновении с отрицательными параметрами ставил знак минус перед переменной или, если было неизвестно, каким по знаку является число, многоточие. Но со временем наименованиями переменных стали обозначать числа любого знака, и началось это с математика Иоганна Худде.

С переменными вычисления в математике решаются проще, ведь как, например, сейчас мы решаем биквадратные уравнения? Вводим переменную. Например:

x 4 + 15x 2 + 7 = 0

За x 2 принимаем некое k, и уравнение приобретает понятный вид:

x 2 = k, при k ≥ 0

k 2 + 15k + 7 = 0

Вот какую пользу в математику несет введение переменных.

Неравенства, примеры решения

Неравенство представляет собой запись, в которой два математических выражения или два числа связаны знаками сравнения: <, >, ≤, ≥. Они бывают строгими и обозначаются знаками < и > или нестрогими со знаками ≤, ≥.

Впервые эти знаки ввел Томас Гарриот. После смерти Томаса вышла его книга с этими обозначениями, математикам они понравились, и со временем их стали повсеместно употреблять в математических вычислениях.

Существует несколько правил, которые нужно соблюдать при решении неравенств с одной переменной:

  1. При переносе числа из одной части неравенства в другую меняем его знак на противоположный.
  2. При умножении или делении частей неравенства на отрицательное число их знаки меняются на противоположные.
  3. Если умножить или разделить обе части неравенства на положительное число, то получится неравенство, равное исходному.

Решить неравенство - значит найти все допустимые значения переменной.

Пример с одной переменной:

10x - 50 > 150

Решаем, как обычное линейное уравнение - переносим слагаемые с переменной влево, без переменной - вправо и приводим подобные члены:

Делим обе части неравенства на 10 и получаем:

Для наглядности в примере решения неравенства с одной переменной изображаем числовую прямую, отмечаем на ней проколотую точку 20, так как неравенство строгое, и данное число не входит в множество его решений.

Решением этого неравенства будет промежуток (20; +∞).

Решение нестрогого неравенства осуществляется так же, как и строгого:

Но есть одно исключение. Запись вида x ≥ 5 нужно понимать так: икс больше или равно пяти, значит число пять входит во множество всех решений неравенства, то есть, записывая ответ, мы ставим квадратную скобку перед числом пять.

Квадратные неравенства

Если взять квадратное уравнение вида ax 2 + bx +c = 0 и изменить в нем знак равно на знак неравенства, то соответственно получим квадратное неравенство.

Чтобы решить квадратное неравенство, надо уметь решать квадратные уравнения.

y = ax 2 + bx + c - это квадратичная функция. Ее мы можем решить с помощью дискриминанта, либо используя теорему Виета. Вспомним, как решаются подобные уравнения:

1) y = x 2 + 12x + 11 - функция является параболой. Ее ветви направлены вверх, так как знак коэффициента "a" положительный.

2) x 2 + 12x + 11 = 0 - приравниваем к нулю и решаем с помощью дискриминанта.

a = 1, b = 12, c = 11

D = b 2 - 4ac= 144 - 44 = 100 > 0, 2 корня

По уравнения получаем:

x 1 = -1, x 2 = -11

Или можно было решить это уравнение по теореме Виета:

x 1 + x 2 = -b/a, x 1 + x 2 = -12

x 1 x 2 = c/a, x 1 x 2 = 11

Методом подбора получаем такие же корни уравнения.

Парабола

Итак, первый способ решения квадратного неравенства - это парабола. Алгоритм ее решения таков:

1. Определяем, куда направлены ветви параболы.

2. Приравниваем функцию к нулю и находим корни уравнения.

3. Строим числовую прямую, отмечаем на ней корни, проводим параболу и находим нужный нам промежуток в зависимости от того, какой у неравенства знак.

Решим неравенство x 2 + x - 12 > 0

Выписываем в виде функции:

1) y = x 2 + x - 12 - парабола, ветви вверх.

Приравниваем к нулю.

x 1 = 3, x 2 = -4

3) Изображаем числовую прямую и на ней точки 3 и -4. Парабола пройдет через них, ветвями вверх и ответом к неравенству будет множество положительных значений, то есть (-∞; -4), (3; +∞).

Метод интервалов

Второй способ - это метод интервалов. Алгоритм его решения:

1. Находим корни уравнения, при которых неравенство равно нулю.

2. Отмечаем их на числовой прямой. Таким образом она делится на несколько интервалов.

3. Определяем знак любого интервала.

4. Расставляем знаки у остальных интервалов, меняя их через один.

Решим неравенство (x - 4)(x - 5)(x + 7) ≤ 0

1) Нули неравенства: 4, 5 и -7.

2) Изображаем их на числовой прямой.

3) Определяем знаки интервалов.

Ответ: (-∞; -7]; .

Решим еще одно неравенство: x 2 (3x - 6)(x + 2)(x - 1) > 0

1. Нули неравенства: 0, 2, -2 и 1.

2. Отмечаем их на числовой прямой.

3. Определяем знаки интервалов.

Прямая делится на промежутки - от -2 до 0, от 0 до 1, от 1 до 2.

Возьмем значение на первом промежутке - (-1). Подставляем в неравенство. При данном значении неравенство становится положительным, значит и знак на этом промежутке будет +.

Неравенство больше нуля, то есть надо найти множество положительных значений на прямой.

Ответ: (-2; 0), (1; 2).

Системы уравнений

Системой уравнений с двумя переменными называют два уравнения, объединенных фигурной скобкой, для которых необходимо найти общее решение.

Системы могут являться равносильными, если общее решение одной из них является решением другой, или они обе не имеют решений.

Мы изучим решение систем уравнений с двумя переменными. Есть два способа их решения - метод подстановки или алгебраический метод.

Алгебраический метод

Чтобы решить систему, изображенную на картинке, данным методом, необходимо сначала помножить одну из ее частей на такое число, чтобы потом иметь возможность взаимно уничтожить одну переменную из обеих частей уравнения. Здесь мы умножаем на три, подводим черту под системой и складываем ее части. В итоге иксы становятся одинаковы по модулю, но противоположны по знаку, и мы их сокращаем. Далее получаем линейное уравнение с одной переменной и решаем его.

Игрек мы нашли, но на этом мы не можем остановиться, ведь мы еще не нашли икс. Подставляем игрек в ту часть, из которой удобно будет вывести икс, например:

X + 5y = 8 , при y = 1

Решаем получившееся уравнение и находим икс.

Главное в решении системы - правильно записать ответ. Многие школьники делают ошибку и пишут:

Ответ: -3, 1.

Но это неверная запись. Ведь, как уже писалось выше, решая систему уравнений, мы ищем общее решение для его частей. Правильным будет ответ:

Метод подстановки

Это, пожалуй, самый простой метод, в котором трудно совершить ошибку. Возьмем систему уравнений номер 1 с этой картинки.

В первой ее части икс уже приведен к нужному нам виду, поэтому нам остается только подставить его в другое уравнение:

5y + 3y - 25 = 47

Переносим число без переменной вправо, приводим подобные слагаемые к общему значению и находим игрек:

Затем, как и в алгебраическом методе, подставляем значение игрека в любое из уравнений и находим икс:

x = 3y - 25, при y = 9

ФУНКЦИИ И ПРЕДЕЛЫ IX

§ 201. Постоянные и переменные величины. Понятие функции

С понятием функции мы уже неоднократно сталкивались. В части I мы рассмотрели линейную, квадратную, степенную и тригонометрические функции. Предыдущая глава была посвящена изучению показательной и логарифмической функций. Теперь нам предстоит сделать общий обзор того, что мы уже знаем о функциях, и рассмотреть некоторые новые вопросы.

Наблюдая различные процессы, можно заметить, что величины, участвующие в них, ведут себя по-разному: одни из них изменяются, другие остаются постоянными. Если, например, в треугольнике ABC вершину В перемещать по прямой MN, параллельной основанию АС (рис. 263), то величины углов А, В и С при этом будут непрерывно изменяться, а сумма их, высота h и площадь треугольника будут оставаться неизменными.

Другой пример. Если какой-нибудь газ сжимать при постоянной температуре, то объем его (V ) и давление (р ) будут изменяться: объем уменьшаться, а давление увеличиваться. Произведение же этих величин, как устанавливает закон Бойля - Мариотта, будет оставаться постоянным:

Vp = c ,

где с - некоторая константа.

Все величины можно разделить на постоянные и переменные.

Переменные величины, участвующие в каком-либо процессе, обычно изменяются не независимо друг от друга, а в тесной связи друг с другом. Например, сжатие газа (при постоянной температуре) приводит к изменению его объема, а это, в свою очередь, обусловливает изменение давления газа. Изменение радиуса основания цилиндра вызывает изменение площади этого основания; последнее же приводит к изменению объема цилиндра и т д. Одна из плавных задач математического изучения того или иного процесса заключается в том, чтобы установить, как изменение одних переменных величин влияет на изменение других переменных величин.

Рассмотрим несколько примеров. Упомянутый выше закон Бойля - Мариотта говорит, что при постоянной температуре объем газа V изменяется обратно пропорционально давлению р : V = c / p . Если известно давление, то по этой формуле можно вычислить объем газа. Аналогично, формула S = πr 2 позволяет определить площадь круга S, если известен его радиус r . По формуле β = π / 2 - α можно найти острый угол прямоугольного треугольника, если известен другой острый угол этого треугольника, и т. д.

При сравнении двух переменных величин одну из них удобно рассматривать как независимую переменную, а другую - как зависимую переменную величину. Например, радиус круга r естественно считать независимой переменной, а площадь круга S = πr 2 - зависимой переменной величиной. Аналогично давление газа р можно считать независимой переменной величиной; тогда его объем V = c / p будет зависимой переменной величиной.

Какую же из двух переменных величин выбрать в качестве зависимой и какую в качестве независимой? Этот вопрос решается по-разному в зависимости от поставленной цели. Если например, нас интересует, к чему приводит изменение давления газа при постоянной температуре, то естественно дпиление принять за независимую, а объем - за зависимую Переменную величину. В этом случае зависимая переменная величина V будет выражаться через независимую величину р по формуле: V = c / p . Если же мы хотим выяснить последствия сжатия газа, то лучше объем рассматривать как независимую, а давление -как зависимую переменную величину. Тогда зависимая переменная величина р будет выражаться через независимую переменную величину V по формуле р = c / V . В любом из этих случаев две величины связаны между собой так, что каждому возможному значению одной из них соответствует вполне определенное значение другой.

Если каждому значению одной переменной величины х каким-либо образом поставлено в соответствие вполне определенное значение другой величины у , то говорят, что задана функция.

Величину у при этом называют зависимой переменной величиной или функцией , а величину х - независимой переменной величиной или аргументом .

Для выражения того, что у есть функция аргумента х , обычно используют обозначения: у = f (х ), у = g (x ) , у = φ (х ) и т. д. (читается: игрек равно эф от икс, игрек равно же от икс, игрек равно фи от икс и т. д.). Выбор буквы для обозначения функции (f, g, φ ) является, конечно, несущественным. Существенно лишь то, какую связь между величинами х и у выражает эта буква.

Значение, которое принимает функция f (х ) при х = а , обозначается f (a ). Если, например, f (х ) = x 2 + 1, то

f (1) = 1 2 + 1 = 2;

f (2) = 2 2 + 1 = 5;

f (a + 1) = (а + 1) 2 + 1 = а 2 + 2а + 2;

f (2а ) = (2а ) 2 + 1 = 4а 2 + 1

Упражнения

1515. Газ, находящийся под давлением в 2 атмосферы, сжимается. Как изменяется при этом: а) вес газа; б) его объем; в) его давление?

1516. По электрической цепи течет ток. С помощью реостата мы изменяем сопротивление цепи. Изменяется ли при этом: а) ток в цепи; б) напряжение тока?

1517. Вершина В треугольника ABC движется по окружности, диаметр которой совпадает с основанием АС этого треугольника. Какие величины в этом процессе остаются постоянными и какие изменяются?

1518.

Найти: а) f (0); б) f (а 2); в) f ( 1 / a ); г) f (sin а ).

1519. Выразить f (2а ) через f (а ) для функций:

а) f (х ) = sin х ; б) f (х ) = tg х ;

Постоянные и переменные величины

Под величиной будем понимать все то, что выражает свойства предмета, явления или процесса. Площадь земельного участка, масса животного, себестоимость продукции, процент жира в молоке и т. д. – все это примеры величин. Каждая из величин может быть измерена с помощью прибора или вычислена, в результате чего получают число, называемое числовым значением величины . Величины выражаются в определенных единицах. Такие величины называются размерными . Каждой величине свойственна своя единица. Единицы величин образуют систему. Общепринятой является Международная система (СИ). Ее основными единицами являются: метр (м) – единица длины; килограмм (кг) – единица массы; секунда (с) – единица времени; кельвин (к) – единица температуры; кандела (кд) – единица силы света; моль – единица количества вещества. Величины могут быть безразмерными. Например, доля опытов, в которых наблюдаемое явление произошло.

Когда мы наблюдаем какой-нибудь процесс или явление из области физики, экономики, агрономии или другой области знаний, то видим, что одни величины сохраняют свои значения, другие же принимают различные значения. Например, при равномерном движении точки время и расстояние меняются, а скорость постоянна. Переменной величиной называется величина, которая принимает различные числовые значения. Величина, числовые значения которой не меняются, называется постоянной .

Обозначения: x, y, z, t,… - переменные величины; a, b, c, d,… - постоянные величины.

Совокупность всех числовых значений переменной величины называется областьюизменения этой переменной.

Области изменения переменной величины:

(a, b) = {x : a < x < b } – промежуток или интервал;

[a, b ] = {x : a ≤ x ≤ b } – отрезок или замкнутый интервал;

(a , b ] = {x : a < x ≤ b },

[a , b ) = {x : a ≤ x < b } – полуоткрытые интервалы;

(-∞, b ] = {x: x ≤ b },

(-∞, b) = {x: x < b},

[a , +∞) = {x: x ≥ a },

(a , +∞) = {x: x > a },

(-∞, +∞) = {x: -∞ < x < +∞} – бесконечные интервалы.

Произвольный интервал (a, b ), содержащий внутри себя точку , называется окрестностью точки : a < < b .

Если точка - середина окрестности, то она называется центром окрестности , величина называется радиусом окрестности .

Примерами переменных могут служить: температура воздуха, параметр функции и многое другое.

Переменная характеризуется только множеством значений, которые она может принимать . Переменную обозначают символом, общим для каждого из её значений.

Переменные в математике

В математике переменной может быть как реальная физическая величина , так и некая абстрактная величина, не отражающая процессов реального мира.

Декарт считал значения переменных всегда неотрицательными, а отрицательные величины выражал знаком отражал знаком «минус» перед переменной. Если знак коэффициента был неизвестен, Декарт ставил многоточие . Нидерландский математик Иоганн Худде уже в 1657 году позволил буквенным переменным принимать значения любого знака .

Переменные в программировании

В программировании переменная - это идентификатор , определяющий данные . Обычно это имя, скрывающее за собой область памяти, куда могут помещаться данные, хранящиеся в другой области памяти. Переменная может иметь тип значений, которые она может принимать. В программировании, переменные, как правило, обозначаются одним или несколькими словами или символами, такими, как «time», «x», «