Гравитационная постоянная mв масса. Новые измерения гравитационной постоянной еще сильнее запутывают ситуацию

Гравитационная постоянная mв масса. Новые измерения гравитационной постоянной еще сильнее запутывают ситуацию

В теории тяготения Ньютона, так и в теории относительности Эйнштейна гравитационная постоянная (G ) является универсальной константой природы, неизменяющаяся в пространстве и времени, независящая от физических и химических свойств среды и гравитирующих масс.

В первоначальном виде в формуле Ньютона коэффициент G отсутствовал. Как указывает источник : «Гравитационная постоянная впервые была введена в закон всемирного тяготения, по-видимому, только после перехода к единой метрической системе мер. Возможно, впервые это было сделано французским физиком С.Д. Пуассоном в «Трактате по механике» (1809), по крайней мере, никаких более ранних работ, в которых фигурировала бы гравитационная постоянная историками не выявлено».

Введение коэффициента G было вызвано двумя причинами: необходимостью установить правильную размерность и согласовать силы гравитации с реальными данными. Но присутствие данного коэффициента в законе всемирного тяготения по-прежнему не проливало свет на физику процесса взаимного притяжения, за что и критиковали Ньютона его современники.

Ньютона обвиняли по одной серьезной причине: если тела притягиваются между собой, то они должны тратить на это энергию, но из теории не видно, откуда энергия берется, как она расходуется и из каких источников пополняется. Как отмечают некоторые исследователи: открытие данного закона произошло после введенного Декартом принципа сохранения количества движения, но из теории Ньютона следовало, что притяжение есть свойство, внутренне присущее взаимодействующим массам тел, которые расходуют энергию без пополнения и меньше ее не становится! Это какой-то неисчерпаемый источник гравитационной энергии!

Лейбниц называл принцип тяготения Ньютона «невещественной и необъяснимой силой». Предположение о силе притяжения в совершенной пустоте было охарактеризовано Бернулли, как «возмутительное»; и принцип «actio in distans» (действия на расстоянии) не встретил тогда особой благосклонности нежели сейчас.

Наверное, не на пустом месте физики в штыки встретили формулу Ньютона, в ней действительно не отражена энергия для гравитационного взаимодействия. Почему на разных планетах разное притяжение, причем G для всех тел на Земле и в Космосе постоянная? Может G зависит от массы тел, но в чистом виде масса не обладает никакой гравитацией.

Учитывая тот факт, что в каждом конкретном случае взаимодействие (притяжение) тел происходит с разной силой (усилием), то эта сила должна зависеть от энергии гравитирующих масс. В связи с изложенным, в формуле Ньютона должен присутствовать энергетический коэффициент, отвечающий за энергию притягивающихся масс. Более правильным утверждением в гравитационном притяжении тел следовало бы говорить не о взаимодействии масс, а взаимодействии энергий, заключенных в этих массах. То есть энергия, имеет материальный носитель, без которого она не может существовать.

Поскольку, энергонасыщенность тел связана с их теплотой, (температурой), то коэффициент должен отражать это соответствие, т.к. теплота порождает гравитацию !

Еще один аргумент по поводу не постоянства G. Приведу цитату из ретро учебника по физике: «Вообще соотношение Е=mc 2 показывает, что масса любого тела пропорциональна его полной энергии. Поэтому всякое изменение энергии тела сопровождается одновременным изменением его массы. Так, например, если какое-либо тело нагревается, то его масса увеличивается» .

Если масса двух нагретых тел увеличивается, то в соответствии с законом всемирного тяготения , и сила их взаимного притяжения тоже должна увеличиваться. Но здесь возникает серьезная проблема. При повышении температуры, стремящейся к бесконечности, массы и сила между гравитирующими телами также будут стремиться к бесконечности. Если мы будем утверждать, что температура бесконечна, а сейчас иногда такие вольности допускаются, то гравитация между двумя телами тоже будет бесконечна, в результате тела при нагревании должны сжиматься, а не расширяться! Но природа, как видите, до абсурда не доходит!

Как обойти эту трудность? Тривиально – необходимо найти максимальную температуру вещества в природе. Вопрос: как ее найти?

Температура конечна

Полагаю, то огромное количество лабораторных измерений гравитационной постоянной, проводились и проводятся при комнатной температуре, равной: Θ=293 К (20 0 С) или близкой к этой температуре, т.к. сам инструмент – крутильные весы Кавендиша, требует очень тонкого с ним обращения (рис.2). При измерениях должны быть исключены всякие помехи, особенно вибрация и температурные изменения. Измерения должны проводиться в вакууме с высокой точностью, этого требует очень малая величина измеряемой величины.

Для того чтобы «Закон всемирного тяготения» был универсальным и всемирным, необходимо связать его с термодинамической шкалой температур. Сделать это нам помогут расчеты и графики, которые представлены ниже.

Возьмем декартову систему координат ОХ – ОУ. В этих координатах построим начальную функцию G=ƒ(Θ ).

На оси абсцисс отложим температуру, начиная от нуля градусов Кельвина. На оси ординат отложим значения коэффициента G, учитывая, что его значения должны укладываться в интервале от нуля до единицы.

Отметим первую реперную точку (А), эта точка с координатами: х=293,15 К (20⁰С); у=6,67408·10 -11 Нм 2 /кг 2 (G). Соединим эту точку с началом координат и получим график зависимости G=ƒ(Θ ), (рис. 3)

Рис. 3

Экстраполируем данный график, продлим прямую до пересечения со значением ординаты, равной единице, у=1. При построении графика возникли технические трудности. Для того чтобы построить начальную часть графика потребовалось сильно увеличить масштаб, т. к. параметр G имеет очень малую величину. График имеет малый угол подъема, поэтому, чтобы уложить его на один лист, прибегнем к логарифмической шкале оси х (рис.4 ).

Рис. 4

А теперь, внимание!

Пересечение функции графика с ординатой G=1 , дает вторую реперную точку (В). Из этой точки опустим перпендикуляр на ось абсцисс, на которой получим значение координаты х=4,39·10 12 К .

Что это за величина и что она означает? По условию построения – это температура. Проекция точки (В) на ось «х» отражает – максимальную возможную температуру вещества в природе!

Для удобства восприятия представим этот же график в двойных логарифмических координатах (рис.5 ).

Коэффициент G не может иметь значения больше единицы по определению. Данная точка замкнула абсолютную термодинамическую шкалу температуры, начало которой было положено лордом Кельвином в 1848 году.

Из графика видно, что коэффициент G пропорционален температуре тела. Поэтому, постоянная гравитации – есть величина переменная, и в законе всемирного тяготения (1) должна определяться отношением:

G E – универсальный коэффициент (Universal coefficient UC), чтобы не путать с G, запишем его с индексом E (Еergy – энергия). Если температуры взаимодействующих тел разные, то берется их среднее значение.

Θ 1 – температура первого тела

Θ 2 – температура второго тела.

Θ max – максимально возможная температура вещества в природе.

В таком написании коэффициент G E не имеет размерности, что и утверждает его как коэффициент пропорциональности и универсальности.

Подставим G E в выражение (1) и запишем закон всемирного тяготения в общем виде:

Только благодаря энергии, заключенной массах происходит их взаимное притяжение. Энергия – это свойство материального мира совершать работу.

Только благодаря потере энергии на притяжение, осуществляется взаимодействие между космическими телами. Потерю энергии можно отождествить с охлаждением.

Всякое тело (вещество) охлаждаясь, теряет энергию и за счет этого, как ни странно, притягивается к другим телам. Физическая природа тяготения тел заключается в стремлении к наиболее устойчивому состоянию с наименьшей внутренней энергией – это естественное состояние природы.

Формула Ньютона (4) приняла системный вид. Это весьма важно для расчетов космических полетов искусственных спутников и межпланетных станций, а также позволит более точно вычислить, прежде всего, массу Солнца. Произведение G на M известно для тех планет, движение спутников вокруг которых измерялось с высокой точностью. Из движения самих планет вокруг Солнца можно вычислить G и массу Солнца. Погрешности масс Земли и Солнца определяются погрешностью G .

Новый коэффициент позволит, наконец, понять и объяснить, почему траектории орбит первых спутников (пионеров) так далеко не соответствовали расчетным. При запуске спутников не учитывалась температура вылетающих газов. Расчеты показывали меньшую тягу ракеты, а спутники поднимались на более высокую орбиту, например, орбита Explorer-1 оказалась выше расчетной на 360 км. Фон Браун ушел из жизни, так и не поняв этот феномен.

До сего времени постоянная гравитации не имела физического смысла, это был всего лишь вспомогательный коэффициент в законе всемирного тяготения, служащий для связки размерностей. Существующее числовое значение этой константы превращало закон не во всемирный, а в частный, для одного значения температуры!

Гравитационная постоянная – величина переменная. Скажу больше, гравитационная постоянная даже в пределах земного тяготения величина не постоянная, т.к. в гравитационном притяжении участвуют не массы тел, а энергии, заключенные в измеряемых телах. Вот по этой причине не удается достичь высокой точности измерений гравитационной постоянной.

Закон Всемирного Тяготения

Закон Всемирного Тяготения Ньютона и универсальный коэффициент (G E =UC).

Поскольку данный коэффициент безразмерен, формула всемирного тяготения получила размерность dim кг 2 /м 2 – это внесистемная единица, которая возникла вследствие использования масс тел. С размерностью мы пришли к первоначальному виду формулы, которая была обусловлена еще Ньютоном.

Поскольку формула (4) отождествляет силу притяжения, которая в системе СИ измеряется в Ньютонах, то можно воспользоваться размерным коэффициентом (К), как в законе Кулона.

Где К – коэффициент, равный 1. Чтобы привести размерность в СИ, можно использовать ту же размерность, что G , т.е. К= m 3 kg -1 s -2 .

Эксперименты свидетельствуют: тяготение порождается не массой (веществом), тяготение осуществляется с помощью энергий, заключенных в этих массах! Ускорение тел в гравитационном поле не зависят от их массы, поэтому все тела падают на землю с одинаковым ускорением. С одной стороны, ускорение тел пропорционально действующей на них силе и, следовательно, пропорционально их гравитационной массе. Тогда по логике рассуждений формула закона всемирного тяготения должна выглядеть следующим образом:

Где Е 1 и Е 2 – энергия, заключенная в массах взаимодействующих тел.

Поскольку в расчетах весьма трудно определить энергию тел, то оставим в формуле Ньютона (4) массы, с заменой постоянной G на энергетический коэффициент G E .

Максимальную температуру более точно можно вычислить математически из соотношения:

Запишем данное соотношение в числовом виде, учитывая, что (G max =1):

Отсюда: Θ max =4,392365689353438·10 12 К (8)

Θ max –это максимально возможная температура вещества в природе, выше которой, значение невозможно!

Сразу хочу отметить, что это далеко не абстрактная цифра, она говорит о том, что в физической природе все конечно! Физика описывает мир исходя из основополагающих представлений о конечной делимости, конечной скорости света, соответственно, и температура должна быть конечна!

Θ max 4,4 триллиона градусов (4.4 тераКельвинов). Трудно представить, по нашим земным меркам (ощущениям) такую высокую температуру, но ее конечное значение ставит запрет на спекуляции с ее бесконечностью. Такое утверждение приводит нас к заключению, что гравитация также не может быть бесконечной, соотношение G E =Θ/Θ max – все ставит на свои места.

Другое дело, если числитель (3) будет равен нулю (абсолютному нулю) термодинамической шкалы температур, тогда сила F в формуле (5) будет равна нулю. Притяжение между телами должно прекратиться, тела и предметы начнут рассыпаться на составляющие их частицы, молекулы и атомы.

Продолжение в следующей статье...

Являясь одной из фундаментальных величин в физике, гравитационная постоянная впервые была упомянута в 18-м веке. Тогда же были предприняты первые попытки измерить ее значение, однако в силу несовершенства приборов и недостаточных знаний в данной области, сделать это удалось лишь в середине 19-го столетия. Позже полученный результат неоднократно корректировался (в последний раз это было сделано в 2013 году). Однако же следует отметить, что принципиального различия между первым (G = 6,67428(67)·10 −11 м³·с −2 ·кг −1 или Н·м²·кг −2) и последним (G = 6,67384(80)·10 −11 м³·с −2 ·кг −1 или Н·м²·кг −2) значениями не существует.

Применяя данный коэффициент для практических расчетов, следует понимать, что константа является таковой в глобальных вселенских понятиях (если не делать оговорок на физику элементарных частиц и прочие малоизученные науки). А это значит, что гравитационная постоянная Земли, Луны или Марса не будут отличаться друг от друга.

Эта величина является базовой константой в классической механике. Поэтому гравитационная постоянная участвует в самых различных расчетах. В частности, не обладая сведениями о более-менее точном значении данного параметра, ученые не смогли бы вычислять столь важный в космической отрасли коэффициент, как ускорение свободного падения (который для каждой планеты или прочего космического тела будет своим).

Однако же Ньютону, озвучившему в общем виде, гравитационная постоянная была известна лишь в теории. То есть он смог сформулировать один из важнейших физических постулатов, не обладая сведениями о величине, на которой он, по сути, основывается.

В отличие от прочих фундаментальных констант, о том, чему равна гравитационная постоянная, физика может сказать лишь с определенной долей точности. Ее значение периодически получают заново, причем каждый раз оно отличается от предыдущего. Большинство ученых полагает, что данный факт связан не с ее изменениями, а с более банальными причинами. Во-первых, это методы измерения (для вычисления этой константы проводят различные эксперименты), а во-вторых, точность приборов, которая постепенно возрастает, данные уточняются, и получается новый результат.

С учетом того, что гравитационная постоянная является величиной, измеряемой 10 в -11 степени (что для классической механики сверхмалое значение), в постоянном уточнении коэффициента нет ничего удивительного. Тем более что коррекции подвергается символ, начиная с 14 после запятой.

Однако же есть в современной волновой физике иная теория, которую выдвинули Фред Хойл и Дж. Нарликар еще в 70-е годы прошлого века. Согласно их предположениям, гравитационная постоянная уменьшается со временем, что влияет на многие иные показатели, считающиеся константами. Так, американским астрономом ван Фландерном был отмечен феномен незначительного ускорения Луны и прочих небесных тел. Руководствуясь данной теорией, следует предположить, что никаких глобальных погрешностей в ранних вычислениях не было, а разница в полученных результатах объясняется изменениями самого значения константы. Эта же теория говорит о непостоянстве некоторых других величин, таких как

Эксперименты по измерению гравитационной постоянной G, проведенные в последние годы несколькими группами, демонстрируют поразительное несовпадение друг с другом. Опубликованное на днях новое измерение, выполненное в Международном бюро мер и весов, отличается от всех них и только усугубляет проблему. Гравитационная постоянная остается на редкость неподатливой для точного измерения величиной.

Измерения гравитационной постоянной

Гравитационная постоянная G, она же постоянная Ньютона, - одна из самых важных фундаментальных констант природы. Это та константа, которая входит в закон всемирного тяготения Ньютона; она не зависит ни от свойств притягивающихся тел, ни от окружающих условий, а характеризует интенсивность самой силы гравитации. Естественно, что такая фундаментальная характеристика нашего мира важна для физики, и она должна быть аккуратно измерена.

Однако ситуация с измерением G до сих пор остается очень необычной. В отличие от многих других фундаментальных констант, гравитационная постоянная с большим трудом поддается измерению. Дело в том, что аккуратный результат можно получить только в лабораторных экспериментах, через измерение силы притяжения двух тел известной массы. Например, в классическом опыте Генри Кавендиша (рис. 2) на тонкой нити подвешивается гантелька из двух тяжелых шаров, и когда сбоку к этим шарам пододвигают другое массивное тело, то сила гравитации стремится повернуть эту гантельку на некоторый угол, пока вращательный момент сил слегка закрученной нити не скомпенсирует гравитацию. Измеряя угол поворота гантельки и зная упругие свойства нити, можно вычислить силу гравитации, а значит, и гравитационную постоянную.

Это устройство (оно называется «крутильные весы») в разных модификациях используется и в современных экспериментах. Такое измерение очень просто по сути, но трудно по исполнению, поскольку оно требует точного знания не только всех масс и всех расстояний, но и упругих свойств нити, а также обязывает минимизировать все побочные воздействия, как механические, так и температурные. Недавно, правда, появились и первые измерения гравитационной постоянной другими, атомно-интерферометрическими методами , которые используют квантовую природу вещества. Однако точность этих измерений пока сильно уступает механическим установкам, хотя, возможно, за ними будущее (см. подробности в новости Гравитационная постоянная измерена новыми методами , «Элементы», 22.01.2007).

Так или иначе, но, несмотря на более чем двухсотлетнюю историю, точность измерений остается очень скромной. Нынешнее «официальное» значение, рекомендованное американским Национальным институтом стандартизации (NIST), составляет (6,67384 ± 0,00080)·10 –11 м 3 ·кг –1 ·с –2 . Относительная погрешность тут составляет 0,012%, или 1,2·10 –4 , или, в еще более привычных для физиков обозначениях, 120 ppm (миллионных долей), и это на несколько порядков хуже, чем точность измерения других столь же важных величин. Более того, вот уже несколько десятилетий измерение гравитационной постоянной не перестает быть источником головной боли для физиков-экспериментаторов. Несмотря на десятки проведенных экспериментов и усовершенствование самой измерительной техники, точность измерения так и осталась невысокой. Относительная погрешность на уровне 10 –4 была достигнута еще 30 лет назад, и никакого улучшения с тех пор нет.

Ситуация по состоянию на 2010 год

В последние несколько лет ситуация стала еще более драматичной. В 2008–2010 годах три группы обнародовали новые результаты измерения G. Над каждым из них команда экспериментаторов работала годами, причем не только непосредственно измеряла величину G, но и тщательно искала и перепроверяла всевозможные источники погрешностей. Каждое из этих трех измерений обладало высокой точностью: погрешности составляли 20–30 ppm. По идее, эти три измерения должны были существенно улучшить наше знание численной величины G. Беда лишь в том, что все они отличались друг от друга аж на 200–400 ppm, то есть на целый десяток заявленных погрешностей! Эта ситуация по состоянию на 2010 год показана на рис. 3 и кратко описана в заметке Неловкая ситуация с гравитационной постоянной .

Совершенно ясно, что сама гравитационная постоянная тут не виновата; она действительно обязана быть одной и той же всегда и везде. Например, есть спутниковые данные, которые хоть и не позволяют хорошо измерить численное значение константы G, зато позволяют убедиться в ее неизменности - если бы G изменилась за год хоть на одну триллионную долю (то есть на 10 –12), это уже было бы заметно. Поэтому единственный вытекающий отсюда вывод таков: в каком-то (или в каких-то) из этих трех экспериментов есть неучтенные источники погрешностей. Но вот в каком?

Единственный способ попытаться разобраться, это повторять измерения на других установках, и желательно разными методами. К сожалению, особенного разнообразия методик здесь пока достичь не удается, поскольку во всех экспериментах используется то или иное механическое устройство. Но всё же разные реализации могут обладать разными инструментальными погрешностями, и сравнение их результатов позволит разобраться в ситуации.

Новое измерение

На днях в журнале Physical Review Letters было опубликовано одно такое измерение. Небольшая группа исследователей, работающих в Международном бюро мер и весов в Париже, с нуля построила аппарат, который позволил измерить гравитационную постоянную двумя разными способами. Он представляет из себя те же крутильные весы, только не с двумя, а с четырьмя одинаковыми цилиндрами, установленными на диске, подвешенном на металлической нити (внутренняя часть установки на рис. 1). Эти четыре груза гравитационно взаимодействуют с четырьмя другими, более крупными цилиндрами, насаженными на карусель, которую можно повернуть на произвольный угол. Схема с четырьмя телами вместо двух позволяет минимизировать гравитационное взаимодействие с несимметрично расположенными предметами (например, стенками лабораторной комнаты) и сфокусироваться именно на гравитационных силах внутри установки. Сама нить имеет не круглое, а прямоугольное сечение; это, скорее, не нить, а тонкая и узкая металлическая полоска. Такой выбор позволяет ровнее передавать нагрузку по ней и минимизировать зависимость от упругих свойств вещества. Весь аппарат находится в вакууме и при определенном температурном режиме, который выдерживается с точностью до сотой доли градуса.

Это устройство позволяет выполнять три типа измерения гравитационной постоянной (см. подробности в самой статье и на страничке исследовательской группы). Во-первых, это буквальное воспроизведение опыта Кавендиша: поднесли груз, весы повернулись на некоторый угол, и этот угол измеряется оптической системой. Во-вторых, его можно запустить в режиме крутильного маятника, когда внутренняя установка периодически вращается туда-сюда, а наличие дополнительных массивных тел изменяет период колебаний (этот способ, впрочем, исследователи не использовали). Наконец, их установка позволяет выполнять измерение гравитационной силы без поворота грузиков. Это достигается с помощью электростатического сервоконтроля: к взаимодействующим телам подводятся электрические заряды так, чтобы электростатическое отталкивание полностью компенсировало гравитационное притяжение. Такой подход позволяет избавиться от инструментальных погрешностей, связанных именно с механикой поворота. Измерения показали, что два метода, классический и электростатический, дают согласующиеся результаты.

Результат нового измерения показан красной точкой на рис. 4. Видно, что это измерение не только не разрешило наболевший вопрос, но и еще сильнее усугубило проблему: оно сильно отличается от всех остальных недавних измерений. Итак, к настоящему моменту у нас имеется уже четыре (или пять, если считать неопубликованные данные калифорнийской группы) разных и при том довольно точных измерения, и все они кардинально расходятся друг с другом! Разница между двумя самыми крайними (и хронологически - самыми последними) значениями уже превышает 20(!) заявленных погрешностей .

Что касается нового эксперимента, тут надо добавить вот что. Эта группа исследователей уже выполняла аналогичный эксперимент в 2001 году. И тогда у них тоже получалось значение, близкое к нынешнему, но только чуть менее точное (см. рис. 4). Их можно было бы заподозрить в простом повторении измерений на одном и том же железе, если бы не одно «но» - тогда это была другая установка. От той старой установки они сейчас взяли только 11-килограммовые внешние цилиндры, но весь центральный прибор был сейчас построен заново. Если бы у них действительно был какой-то неучтенный эффект, связанный именно с материалами или изготовлением аппарата, то он вполне мог измениться и «утащить за собой» новый результат. Но результат остался примерно на том же месте, что и в 2001 году. Авторы работы видят в этом лишнее доказательство чистоты и достоверности их измерения.

Ситуация, когда сразу четыре или пять результатов, полученных разными группами, все различаются на десяток-другой заявленных погрешностей, по-видимому, для физики беспрецедентна. Какой бы высокой ни была точность каждого измерения и как бы авторы ею ни гордились, для установления истины она сейчас не имеет никакого значения. И пока что пытаться на их основании узнать истинное значение гравитационной постоянной можно только одним способом: поставить значение где-то посередине и приписать погрешность, которая будет охватывать весь этот интервал (то есть раза в полтора-два ухудшить нынешнюю рекомендованную погрешность). Можно лишь надеяться, что следующие измерения будут попадать в этот интервал и постепенно будут давать предпочтение какому-то одному значению.

Так или иначе, но гравитационная постоянная продолжает оставаться головоломкой измерительной физики. Через сколько лет (или десятилетий) эта ситуация действительно начнет улучшаться, сейчас предсказать трудно.

Гравитационная постоянная или иначе – постоянная Ньютона – одна из основных констант, используемых в астрофизике. Фундаментальная физическая постоянная определяет силу гравитационного взаимодействия. Как известно, силу, с которой каждое из двух тел, взаимодействующих посредством , притягивается можно высчитать из современной формы записи закона всемирного тяготения Ньютона:

  • m 1 и m 2 — тела, взаимодействующие посредством гравитации
  • F 1 и F 2 – векторы силы гравитационного притяжения, направленные к противоположному телу
  • r – расстояние между телами
  • G – гравитационная постоянная

Данный коэффициент пропорциональности равен модулю силы тяготения первого тела, которая действует на точечное второе тело единичной массы, при единичном расстоянии между этими телами.

G = 6,67408(31)·10 −11 м 3 ·с −2 ·кг −1 , или Н·м²·кг −2 .

Очевидно, что данная формула широко применима в области астрофизики и позволяет рассчитать гравитационное возмущение двух массивных космических тел, для определения дальнейшего их поведения.

Работы Ньютона

Примечательно, что в трудах Ньютона (1684-1686) гравитационная постоянная в явном виде отсутствовала, как и в записях других ученых аж до конца XVIII-го века.

Исаак Ньютон (1643 — 1727)

Ранее использовался так называемый гравитационный параметр, который равнялся произведению гравитационной постоянной на массу тела. Нахождение такого параметра в то время было более доступно, поэтому на сегодняшний день значение гравитационного параметра различных космических тел (в основном Солнечной системы) более точно известно, нежели порознь значение гравитационной постоянной и массы тела.

µ = GM

Здесь: µ — гравитационный параметр, G – гравитационная постоянная, а M — масса объекта.

Размерность гравитационного параметра — м 3 с −2 .

Следует отметить тот факт, что значение гравитационной постоянной несколько варьируется даже до сегодняшнего дня, а чистое значение масс космических тел в то время было определить довольно сложно, поэтому гравитационный параметр нашел более широкое применение.

Эксперимент Кавендиша

Эксперимент по определению точного значения гравитационной постоянной впервые предложил английский естествоиспытатель Джон Мичелл, который сконструировал крутильные весы. Однако, не успев провести эксперимент, в 1793-м году Джон Мичелл умер, а его установка перешла в руки Генри Кавендишу – британскому физику. Генри Кавендиш улучшил полученное устройство и провел опыты, результаты которых были опубликованы в 1798-м году в научном журнале под названием «Философские труды Королевского общества».

Генри Кавендиш (1731 — 1810)

Установка для проведения эксперимента состояла из нескольких элементов. Прежде всего она включала 1,8-метровое коромысло, к концам которого крепились свинцовые шарики с массой 775 г и диаметром 5 см. Коромысло было подвешено на медной 1-метровой нити. Несколько выше крепления нити, ровно над ее осью вращения устанавливалась еще одна поворотная штанга, к концам которой жестко крепились два шара массой 49,5 кг и диаметром 20 см. Центры всех четырех шаров должны были лежать в одной плоскости. В результате гравитационного взаимодействия притяжение малых шаров к большим должно быть заметно. При таком притяжении нить коромысла закручивается до некоторого момента, и ее сила упругости должна равняться силе тяготения шаров. Генри Кавендиш измерял силу тяготения посредством измерения угла отклонения плеча коромысла.

Более наглядное описание эксперимента доступно в видео ниже:

Для получения точного значения константы Кавендишу пришлось прибегнуть к ряду мер, снижающих влияние сторонних физических факторов на точность эксперимента. В действительности Генри Кавендиша проводил эксперимент не для того, чтобы выяснить значение гравитационной постоянной, а для расчета средней плотности Земли. Для этого он сравнивал колебания тела, вызванные гравитационным возмущением шара известной массы, и колебания, вызванные тяготением Земли. Он достаточно точно вычислил значение плотности Земли – 5,47 г/см 3 (сегодня более точные расчеты дают 5,52 г/см 3). Согласно различным источникам, значение гравитационной постоянной, высчитанное из гравитационного параметра с учетом плотности Земли, полученной Кавердишем, составило G=6,754·10 −11 м³/(кг·с²), G = 6,71·10 −11 м³/(кг·с²) или G = (6,6 ± 0,04)·10 −11 м³/(кг·с²). До сих пор неизвестно, кто впервые получил численное значение постоянной Ньютона из работ Генри Кавердиша.

Измерение гравитационной постоянной

Наиболее раннее упоминание гравитационной постоянной, как отдельной константы, определяющей гравитационное взаимодействие, найдено в «Трактате по механике», написанном в 1811-м году французским физиком и математиком — Симеоном Дени Пуассоном.

Измерение гравитационной постоянной проводится различными группами ученых и по сей день. При этом, несмотря на обилие доступных исследователям технологий, результаты экспериментов дают различные значения данной константы. Из этого можно было бы сделать вывод, что, возможно, гравитационная постоянная на самом деле непостоянная, а способна менять свое значение, с течением времени или от места к месту. Однако, если значения константы по результатам экспериментов разнятся, то неизменность этих значений в рамках этих экспериментов уже проверена с точностью до 10 -17 . Кроме того, согласно астрономическим данным постоянная G не изменилась в значительной степени за несколько последних сотен миллионов лет. Если постоянная Ньютона и способна меняться, то ее изменение не превысило б отклонение на число 10 -11 – 10 -12 в год.

Примечательно, что летом 2014-го года совместно группа итальянских и нидерландских физиков провели эксперимент по измерению гравитационной постоянной совсем иного вида. В эксперименте использовались атомные интерферометры, которые позволяют отследить влияние земной гравитации на атомы. Значение константы, полученное таким образом, имеет погрешность 0,015% и равняется G = 6.67191(99) × 10 −11 м 3 ·с −2 ·кг −1 .

Когда Ньютон открыл закон всемирного тяготения, он не знал ни одного числового значения масс небесных тел, в том числе и Земли. Неизвестно ему было и значение постоянной G.

Между тем гравитационная постоянная G имеет для всех тел Вселенной одно и то же значение и является одной из фундаментальных физических констант. Каким же образом можно найти ее значение?

Из закона всемирного тяготения следует, что G = Fr 2 /(m 1 m 2). Значит, для того чтобы найти G, нужно измерить силу притяжения F между телами известных масс m 1 и m 2 и расстояние r между ними.

Первые измерения гравитационной постоянной были осуществлены в середине XVIII в. Оценить, правда весьма грубо, значение G в то время удалось в результате рассмотрения притяжения маятника к горе, масса которой была определена геологическими методами.

Точные измерения гравитационной постоянной впервые были проведены в 1798 г. замечательным ученым Генри Кавендишем - богатым английским лордом, прослывшим чудаковатым и нелюдимым человеком. С помощью так называемых крутильных весов (рис. 101) Кавендиш по углу закручивания нити А сумел измерить ничтожно малую силу притяжения между маленькими и большими металлическими шарами. Для этого ему пришлось использовать столь чувствительную аппаратуру, что даже слабые воздушные потоки могли исказить измерения. Поэтому, чтобы исключить посторонние влияния, Кавендиш разместил свою аппаратуру в ящике, который оставил в комнате, а сам проводил наблюдения за аппаратурой с помощью телескопа из другого помещения.

Опыты показали, что

G ≈ 6,67 · 10 –11 Н · м 2 /кг 2 .

Физический смысл гравитационной постоянной заключается в том, что она численно равна силе, с которой притягиваются две частицы с массой по 1 кг каждая, находящиеся на расстоянии 1 м друг от друга. Эта сила, таким образом, оказывается чрезвычайно малой - всего лишь 6,67 · 10 –11 Н. Хорошо это или плохо? Расчеты показывают, что если бы гравитационная постоянная в нашей Вселенной имела значение, скажем, в 100 раз большее, чем приведенное выше, то это привело бы к тому, что время существования звезд, в том числе Солнца, резко уменьшилось бы и разумная жизнь на Земле появиться бы не успела. Другими словами, нас бы с вами сейчас не было!

Малое значение G приводит к тому, что гравитационное взаимодействие между обычными телами, не говоря уже об атомах и молекулах, является очень слабым. Два человека массой по 60 кг на расстоянии 1 м друг от друга притягиваются с силой, равной всего лишь 0,24 мкН.

Однако по мере увеличения масс тел роль гравитационного взаимодействия возрастает. Так, например, сила взаимного притяжения Земли и Луны достигает 10 20 Н, а притяжение Земли Солнцем еще в 150 раз сильнее. Поэтому движение планет и звезд уже полностью определяется гравитационными силами.

В ходе своих опытов Кавендиш также впервые доказал, что не только планеты, но и обычные, окружающие нас в повседневной жизни тела притягиваются по тому же закону тяготения, который был открыт Ньютоном в результате анализа астрономических данных. Этот закон действительно является законом всемирного тяготения.

«Закон тяготения универсален. Он простирается на огромные расстояния. И Ньютон, которого интересовала Солнечная система, вполне мог бы предсказать, что получится из опыта Кавендиша, ибо весы Кавендиша, два притягивающихся шара, - это маленькая модель Солнечной системы. Если увеличить ее в десять миллионов миллионов раз, то мы получим Солнечную систему. Увеличим еще в десять миллионов миллионов раз - и вот вам галактики, которые притягиваются друг к другу по тому же самому закону. Вышивая свой узор, Природа пользуется лишь самыми длинными нитями, и всякий, даже самый маленький, образчик его может открыть нам глаза на строение целого» (Р. Фейнман).

1. В чем заключается физический смысл гравитационной постоянной? 2. Кем впервые были проделаны точные измерения этой постоянной? 3. К чему приводит малость значения гравитационной постоянной? 4. Почему, сидя рядом с товарищем за партой, вы не ощущаете притяжение к нему?