Энтропия, второй закон термодинамики. Законы термодинамики и их описание

Энтропия, второй закон термодинамики. Законы термодинамики и их описание
Энтропия, второй закон термодинамики. Законы термодинамики и их описание

Второй закон термодинамики. Энтропия.

Второй закон связан с понятием энтропии, являющейся мерой хаоса (или мерой порядка). Второй закон термодинамики гласит, что для вселенной в целом энтропия возрастает.

Существует два классических определения второго закона термодинамики:

  • Кельвина и Планка

  • Не существует циклического процесса, который извлекает количество теплоты из резервуара при определенной температуре и полностью превращает эту теплоту в работу. (Невозможно построить периодически действующую машину, которая не производит ничего другого, кроме поднятия груза и охлаждения резервуара теплоты)

  • Клаузиуса
  • Не существует процесса, единственным результатом которого является передача количества теплоты от менее нагретого тела к более нагретому. (Невозможен круговой процесс, единственным результатом которого было бы производство работы за счет охлаждения теплового резервуара)

Оба определения второго закона термодинамики опираются на первый закон термодинамики, утверждающий, что энергия убывает.

Второй закон связан с понятием энтропии (S) .

Энтропия порождается всеми процессами, она связана с потерей системы способности совершать работу. Рост энтропии - стихийный процесс. Если объем и энергия системы постоянны, то любое измение в системе увеличивает энтропию. Если же объем или энергия системы меняются, энтропия системы уменьшается. Однако, энтропия вселенной при этом не уменьшается.

Для того, чтобы энергию можно было использовать, в системе должны быть области с высоким и низким уровнями энергии. Полезная работа производится в результате передачи энергии от области с высоким уровнем энергии к области с низким уровнем энергии.

  • 100% энергии не может быть преобразовано в работу
  • Энтропия может вырабатываться, но не может быть уничтожена

Эффективность теплового двигателя

Эффективность теплового двигателя, действующего между двумя энергетическими уровнями, определена в пересчете на абсолютные температуры

η = (T h - T c) / T h = 1 - T c / T h

η = эффективность

T c = нижняя граница температуры (K)

Для того, чтобы достичь максимальной эффективности T c должна быть на столько низкой, на сколько это возможно. Чтобы эффект был 100% -м, T c должна равнятся 0 по шкале Kельвина. Практически это невозможно, поэтому эффективность всегда меньше 1 (менее 100%).

  • Изменение энтропии > 0
    Необратимый
    процесс
  • Изменение энтропии= 0
    Двусторонний
    процесс (обратимый)
  • Изменение энтропии < 0
    Невозможный
    процесс (неосуществимый)

Энтропия определяет относительную способность одной системы влиять на другую. Когда энергия двигается к нижнему энергетическому уровню, где уменьшается возможность влияния на окружающую среду, энтропия увеличивается.

Определение энтропии

Энтропия определяется как:

T = абсолютная температура (K)

Изменение энтропии системы вызвано изменением содержания темпла в ней. Изменение энтропии равно изменению темпла системы деленной на среднюю абсолютную температуру (T a):

Сумма значений (H / T) для каждого полного цикла Карно равна 0. Это происходит из-за того, что каждому положительному H противостоит отрицательное значение H.

  • Тепловой цикл Карно

Цикл Карно— идеальный термодинамический цикл.

В тепловом двигателе, газ (реверсивно) нагревается (reversibly heated), а затем охлаждается. Модель цика следующая: Положение 1 --() --> Положение 2 --() --> Положение 3 --(изотермическое сжатие) --> Положение 4 --(адиабатическое сжатие) --> Положение 1

Положение 1 - Положение 2: Изотермическое расширение
Изотермическое расширение. В начале процесса рабочее тело имеет температуру T h , то есть температуру нагревателя. Затем тело приводится в контакт с нагревателем, который изотермически (при постоянной температуре) передаёт ему количество теплоты Q H . При этом объём рабочего тела увеличивается. Q H =∫Tds=T h (S 2 -S 1) =T h ΔS
Положение 2 - Положение 3: Адиабатическое расширение
Адиабатическое (изоэнтропическое) расширение. Рабочее тело отсоединяется от нагревателя и продолжает расширяться без теплообмена с окружающей средой. При этом его температура уменьшается до температуры холодильника.
Положение 3 - Положение 4: Изотермическое сжатие
Изотермическое сжатие. Рабочее тело, имеющее к тому времени температуру T c , приводится в контакт с холодильником и начинает изотермически сжиматься, отдавая холодильнику количество теплоты Q c . Q c =T c (S 2 -S 1)=T c ΔS
Положение 4 - Положение 1: Адиабатическое сжатие
Адиабатическое (изоэнтропическое) сжатие. Рабочее тело отсоединяется от холодильника и сжимается без теплообмена с окружающей средой. При этом его температура увеличивается до температуры нагревателя.

При изотермических процессах температура остаётся постоянной, при адиабатических отсутствует теплообмен, а значит, сохраняется энтропия.

Поэтому цикл Карно удобно представить в координатах T и S (температура и энтропия).

Законы термодинамики были определены эмперическим путем (эксперементально). Второй закон термодинамики - это обощение экспериментов, связанных с энтропией. Известно, что dS системы плюс dS окружающей среды равно или больше 0.

  • Энтропия адиабатически изолированной системы не меняется!

Пример - Энтропия при нагревании воды

Процесс нагревания 1 кг воды от 0 до 100 o C (273 до 373 K)

При 0 o C = 0 кДж/кг (удельная - на единицу массы)

При 100 o C = 419 кДж/кг

Изменение удельной энтропии:

dS = dH / T a

= ((419 кДж/кг) - (0 кДж/кг)) / ((273 К + 373 К)/2)

= 1.297 кДж/кг*К

Пример - Энтропия при испарении воды

Процесс превращения 1 кг воды при 100 o C (373 K) в насыщенный пар при 100 o C (373 K) при нормальных условиях.

Удельная энтальпия пара при 100 o C (373 K) до испарения = 0 кДж/кг

100 o C (373 K) при испарении = 2 258 кДж/кг

Изменение удельной энтропии:

dS = dH / T a

= (2 258 - 0) / ((373 + 373)/2)

= 6.054 кДж/кг*К

Полное изменение удельной энтропии испарения воды - это сумма удельной энтропии воды (при 0 o C) плюс удельная энтропия пара (при температуре 100 o C).

Основу термодинамики составляют фундаментальные законы природы, сформулированые на основании обобщения результатов множества опытных исследований и открытий. Из этих законов, принимаемых за аксиомы; логическим путем получены все главнейшие следствия, касающиеся различных термодинамических систем, которые именуются н а ч а л а м и или з а к о- н а м и термодинамики.

1.2.1. Первый закон термодинамики

Абсолютный по своему существу, один из наиболее общих законов природы – закон сохранения и превращения энергии . Согласно этому закону, энергия закрытой системы при любых процессах, происходящих в системе, остается неизменной. При этом энергия может только превращаться из одной формы в другую.

Первый закон термодинамики является частным случаем этого всеобщего закона и представляет собой его приложение к процессам в термодинамических системах. Он устанавливает возможность превращения различных форм энергии друг в друга и определяет, в каких количественных соотношениях эти взаимные превращения осуществляются.

Изменение энергии произвольной неизолированной системы может происходить в общем случае только за счет двух форм энергообмена – теплоты и работы:

E = Q L , (1.12)

где ∆ E – изменение энергии системы;

Q – теплота, подведенная к системе;

L – работа, совершенная над системой.

Согласно уравнению (1.12), изменение энергии термодинамической системы возможно за счет подведенной к системе теплоты и совершенной над системой работой.

Уравнение (1.12) представляет собой общее аналитическое выражение первого закона термодинамики. Выразим его через параметры состояния системы. Изменение энергии ∆E получим из выражения (1.7):

E = ∆ I + m ( ).

Для термодинамической системы, в которой разностью кинетической энергии можно пренебречь, изменение энергии системы будет равно изменению энтальпии, т.е. ∆E = ∆ I . Тогда с учетом выражений (1.11) и (1.12) получим уравнение первого закона термодинамики в виде:

Q = ∆I + L тех (1.13)

Теплота, подведенная к системе, идет на изменение энтальпии системы и совершение системой технической работы.

Заменим в уравнении (1.13) изменение энтальпии ∆I изменением внутренней энергии DU и, используя выражение (1. 6), получим:

Q = ∆ U + L расш. (1.14)

Уравнения (1.13) и (1.14) представляют собой интегральную форму записи первого закона термодинамики.

Из выражения (1.13) следует, что техническая работа может быть совершена термодинамической системой за счет уменьшения энтальпии и подведенной теплоты. Если процесс круговой, то ∆I = 0, следовательно, в постоянно действующих машинах (в них процессы изменения состояния круговые) для получения технической работы необходимым условием является подведение теплоты.

Аналогичное рассуждение можно провести и по уравнению (1.14).

Термодинамическая система может совершить работу расширения только за счет уменьшения своей внутренней энергии или за счет подведенной теплоты. Если в результате процесса внутренняя энергия системы не изменяется (например, в системе не изменяется температура), то вся теплота, полученная системой от окружающей среды, идет на совершение работы:

Q = L расш.

Это выражение позволяет дать следующие формулировки первого закона термодинамики.

При неизменной внутренней энергии системы теплота и работа эквивалентны.

Вечный двигатель первого рода невозможен.

Предполагалось, что вечный двигатель первого рода должен только совершать работу над окружающей средой, ничего не получая от нее.

До сих пор рассматривались системы произвольной массы. Для анализа удобнее пользоваться величинами, приведенными к единице массы вещества. Запишем уравнения (1.13) и (1.14) для 1 кг массы:

q = ∆ i + l тех ; (1.15)

q = ∆ u + l рас. (1.16)

Используя выражения (1.9) и (1.11), запишем полученные уравнения в дифференциальной форме:

dq = di - vdp (1.17)

dq = du + pdv (1.18)

Уравнения (1.17) и (1.18) представляют собой разновидность математической записи первого закона термодинамики в дифференциальной форме..

Значение первого закона:

во-первых, он формирует принцип устройства теплоэнергетических установок и систем;

во-вторых, он объясняет физическую сущность процессов, происходящих в тепловых машинах;

в-третьих, он используется при расчетах термодинамических процессов и позволяет оценить энергетический баланс тепловых машин.

1.2.2. Второй закон термодинамики

Первый закон термодинамики, являясь частным случаем закона сохранения и превращения энергии, рассматривает только его количественную сторону, заключающуюся в том, что при известном изменении энергии системы соотношение между теплотой и работой строго определенно. Этот закон не устанавливает направлений и полноты передачи энергии между телами, не определяет условий, при которых возможно преобразование теплоты в работу, не делает различий между их прямыми и обратными превращениями. Если исходить лишь из первого закона термодинамики, то правомерно считать, что любой мыслимый процесс, который не противоречит закону сохранения энергии, принципиально возможен и мог бы иметь место в природе. Ответ на поставленные вопросы дает второй закон термодинамики, который представляет собой совокупность положений, обобщающих опытные данные о качественной стороне закона сохранения и превращения энергии.

Многообразие особенностей взаимного превращения теплоты и работы, а также различные аспекты, в которых эти превращения рассматриваются, объясняют наличие нескольких, по сути эквивалентных, формулировок второго закона термодинамики.

Основные положения этого закона были высказаны французским инженером С. Карно (1824 г.). Карно пришел к выводу, что для преобразования теплоты в работу необходимы два источника теплоты с разной температурой. Само же название “Второй закон термодинамики” и исторически первая его формулировка (1850 г.) принадлежат немецкому физику Р. Клаузиусу:

“Теплота может переходить сама собой только от горячего тела к холодному; для обратного перехода надо затратить работу”,

Из этого утверждения следует, что для перехода теплоты от тела с меньшей температурой к телу с большей температурой обязательно необходим подвод энергии от внешнего источника в какой-либо форме, например, в форме работы. В противоположность этому теплота от тела с большей температурой самопроизвольно, без затрат каких-либо видов энергии, переходит к телам с меньшей температурой. Это означает, в частности, что теплообмен при конечной разности температур представляет собой строго односторонний, необратимый процесс, и направлен он в сторону тел с меньшей температурой.

Второй закон термодинамики лежит в основе теории тепловых двигателей. Тепловой двигатель представляет собой непрерывно действующее устройство, результатом действия которого является превращение теплоты в работу. Так, чтобы создать тепловой двигатель, непрерывно производящий работу, необходимо, прежде всего, иметь тело, являющееся поставщиком энергии в форме теплоты. Назовем его и с т о ч н и к о м т е п л о т ы.

Обязательно наличие и другого тела, которое воспринимает от первого

э
нергию в форме теплоты, а отдает ее в форме работы. Это так называемое р а б о ч е е т е л о. Его роль выполняет какая-либо упругая среда (газ, пар). Подвод тепла и преобразование его в работу сопровождается изменением состояния рабочего тела. На рис. 1.6 покажем это изменение условно кривой процесса 1-а-2. Здесь изменяются параметры состояния и, прежде всего, объем рабочего тела, что приводит к совершению работы расширения. Для получения непрерывной работы требуется рабочее тело вернуть в первоначальное состояние по процессу 2-б-1. Таким образом

Рис. 1.6 для непрерывного преобразования теплоты в работу надо постоянно осуществлять этот замкнутый к р у г о в о й п р о ц е с с или ц и к л.

Круговым процессом, или циклом, называют совокупность термодинамических процессов, в результате осуществления которых рабочее тело возвращается в свое первоначальное состояние.

Чтобы замкнуть цикл, требуется затратить некоторое количество энергии, в данном случае в форме работы сжатия. Эта работа сжатия должна быть компенсирована путем отвода от рабочего тела эквивалентного ей количества теплоты. Следовательно, необходимо третье тело, которое воспринимает эту компенсацию. Назовем его т е п л о п р и е м н и к о м. Чтобы теплоприемник воспринял некоторое количество теплоты, его температура должна быть ниже температуры теплоисточника.

В результате выполненного таким способом цикла 1-а-2-б-1, изображенного на рис. 1.6, только часть теплоты Q 1 , полученной рабочим телом от теплоисточника, преобразовывается в работу, другая же часть этой теплоты Q 2 обязательно отдается теплоприемнику.

Начало формы

В рассмотренной схеме непрерывно действующего теплового двигателя одно и то же рабочее тело постоянно участвует в круговом процессе. В циклах реальных двигателей рабочее вещество периодически обновляется, т.е. заменяет равным количеством “свежего” вещества. С термодинамической точки зрения замена рабочего вещества может рассматриваться как возращение рабочего тела в исходное состояние.

Конец формы

Таким образом, для непрерывного преобразования теплоты в работу нужны: источник теплоты; рабочее тело и теплоприемник, имеющий более низкую температуру, чем теплоисточник. Отвод некоторой части теплоты в теплоприемник является обязательным условием функционирования тепловых двигателей. Это условие изложено в следующих формулировках второго закона термодинамики:

“Невозможно построить периодически действующую машину, кото- рая не производит ничего другого, кроме работы и охлаждения источника теплоты” (В. Томсон).

“ Все естественные процессы являются переходом от менее вероятных к более вероятным состояниям” (Л. Больцман).

“Осуществление вечного двигателя второго рода невозможно”

(В. Освальд).

Под “вечным” двигателем второго рода подразумевается такой тепловой двигатель, который мог бы совершать непрерывную работу, имеятолько один источник теплоты. Из второго закона термодинамики следует, что какой бы по величине тепловой энергией ни обладала система, при равенстве температур тел системы эту энергию нельзя преобразовать в работу. По этой причине оказались бесплодными попытки тысяч изобретателей “вечных” двигателей к совершению работы расширения.

Распределение энергии, полученной от теплоисточника, в тепловых двигателях схематично показано на рис. 1.7. Полезная работа, совершаемая 1 кг массы рабочего тела за цикл, равна разности работ расширения l расш и сжатия l сж, т.е.

l ц = l расш - l сж. (1.19)

Количественную связь между теплотой и работой для 1 кг рабочего тела в процессах расширения 1-а-2 и сжатия 2-б-1

(см. рис. 1.6) на основании первого закона термодинамики запишем уравнениями:

q 1 = ∆ u 1- a 2 + l расш и q 2 = ∆ u 2-б-1 + l c ж ,

где q 1 – количество теплоты, подведенного к 1 кг рабочего тела от теплоисточника;

q 2 – количество теплоты, отведенного от

1 кг рабочего тела к теплоприемнику;

∆u 1- а -2 и ∆u 2-б-1 – изменение внутрен-

ней энергии 1 кг рабочего тела в процессахРис. 1.7

1-а-2 и 2-б-1, соответственно.

Вычтем второе уравнение из первого и получим:

q 1 q 2 = ∆ u 1-а-2-б-1 + (l расш l сж ).

Так как рабочее тело возвращается в исходное состояние, то изменение внутренней энергии за цикл будет равно нулю, т.е. ∆u 1-а-2-б-1 = 0. В итоге с учетом выражения (1.19) получим:

l ц = q 1 q 2 (1.20)

Из (1.20) следует, что, во-первых, работа цикла совершается только за счет теплоты и, во-вторых, работа цикла равна теплоте, подведенной от теплоисточника, за вычетом теплоты, отведенной к теплоприемнику.

Долю полезно используемой теплоты оценивают т е р м и ч е с к и м

КПД цикла, который обозначают η t .

Под термическим КПД понимают отношение теплоты, преобразо-

ванной в полезную работу цикла, ко всей подведенной теплоте:

η t =
или η t = 1 - . (1.21)

Из данных выражений следует, что чем меньше теплоы передается теплоприемнику, тем больше значение η t . Это означает, что происходит более полное преобразование теплоты в работу.

Ввиду необходимости передавать часть энергии в форме теплоты теплоприемнику термический КПД любого цикла не может быть равен единице.

Таким образом, второй закон термодинамики устанавливает полноту преобразования теплоты в работу.

Кроме того, он указывает на качественное различие между теплотой и работой. Если работа может вся без остатка преобразовываться в теплоту, то теплота никогда полностью не может быть преобразована в работу.

Уникальным научным достижением явилось выражение этого качественного различия количественной величиной – э н т р о п и е й.

1.2.3. Энтропия. Математическое выражение второго закона

термодинамики.

Энтропия ” в переводе с греческого означает “поворот” или “превращение”. Сначала понятие энтропии было введено в науку формально. Р.Клаузиус (1854г.) показал, что для термодинамической системы существует некая функция S , приращение которой определяется выражением

(1.22)

Он назвал эту функцию энтропией. Позже, при рассмотрении большого числа задач, было выявлено физическое содержание энтропии.

Так как энтропия не поддается простому интуитивному представлению, попытаемся уточнить ее смысл путем сравнения с аналогичными величинами, более доступными для нашего понимания. Запишем выражение работы расширения в дифференциальной форме:

dL расш = p dV .

Здесь давление p является величиной необходимой, но не достаточной для совершения работы. Изменение же объема приведет к работе расширения. Объем в приведенном уравнении выполняет свойство достаточного параметра. Таким образом, судить о том, что совершена работа расширения или сжатия можно лишь по изменению объема.

Теперь запишем выражение (1.22) в виде:

dQ = T dS .

Здесь температура является величиной необходимой, но еще не достаточной для того, что бы говорить о том, подводится тепло к системе или отводится от неё. Так, в адиабатном процессе система не обменивается теплотой с окружающей средой, а температура изменяется существенно. Остается один параметр, который должен обладать свойством достаточности , и этот параметр – энтропия. Только по изменению энтропии можно судить о теплообмене системы с окружающей средой. Отсюда

Энтропия есть калорический параметр состояния термодинамичес-

кой системы, характеризующий направление протекания процесса

теплообмена между системой и внешней средой.

Можно сказать, что энтропия – это единственная физическая величина, изменение которой в процессе однозначно указывает на наличие энергообмена в форме теплоты.

Выражение (1.22) устанавливает как качественную, так и количественную связь между теплотой и энтропией: если изменяется энтропия тела или системы, то в том и другом случае подводится энергия в форме теплоты; если энтропия неизменна, то процесс протекает без энергообмена в форме теплоты. Равенство (1.22) является аналитическим выражением второго закона термодинамики для элементарного равновесного процесса.

Выражение (1.22) дает возможность установить единицу энтропии, которая равна Дж/К.

Абсолютное значение энтропии определяется с точностью до некоторой постоянной S 0 . Численное значение постоянной S 0 на основе только первого и второго законов термодинамики не может быть определено. Однако это не накладывает ограничений на использование энтропии в расчетах. В практике, как правило, интерес представляет не абсолютная величина энтропии, а ее изменение, для которого численное значение постоянной S 0 особой роли не играет. Поэтому часто величине придают произвольное значение для условно принятого, так называемого с т а н д а р т н о г о состояния тела. Если это стандартное состояние считать исходным и приписать ему значение энтропии S 0 , то для вычисления энтропии в состоянии а будет выражение:

Приведенное значение энтропии обозначают через s = S / m c единицей измерения Дж/(кг×К).

Выражение (1.22), записанное через приведенные значения, будет иметь вид:

. (1.23)

Энтропия, являясь калорическим параметром, обладает рядом свойств.

1. Энтропия является однозначной функцией состояния системы.

2. Энтропия, подобно внутренней энергии, является аддитивной величиной.

.

3.Для обратимых и необратимых процессов в термодинамической сис

теме изменение энтропии определяется уравнением:

, (1.24)

в котором знак равенства относится к обратимым процессам, знак ²больше² – к необратимым.

Из выражений (1.24) следует, что энтропия изолированной системы может оставаться без изменения или возрастать, но не уменьшаться.

1.2.4. Эксергия

Введение понятия ‘энтропия’ дает возможность количественно оценить качественное различие между теплотой и работой. Для системы массой 1 кг получим уравнения, объединяющие аналитические выражения первого и второго законов термодинамики. Так, из выражений (1.23) и (1.19) следует:

ds =
. (1.25)

Из равенств (1.23) и (1.18) получим:

ds =
. (1.26)

Уравнения в виде (1.25) и (1.26) именуют т е р м о д и н а м и ч е с к и- м и т о ж д е с т в а м и. С их помощью в термодинамике устанавливается ряд особенностей систем, полнее раскрываются связи между физическими величинами в процессах.

Используя уравнение (1.25), установим максимально возможное количество технической работы, которую может совершить данная термодинамическая система, находящаяся в заданном начальном состоянии, если все совершаемые системой процессы обратимы и осуществляются до конечного состояния, равновесного с окружающей средой.

В термодинамике максимально возможную техническую работу системы называют э к с е р г и е й.

Обозначают эксэргию системы через E x . За единицу эксэргии в СИ принят джоуль. Ее приведенное значение (e x = Е x / m ) имеет единицу измерения Дж/кг.

В закрытой термодинамической системе при преобразовании теплоты в работу по циклу Карно можно принять e x = l ц . Тогда, при отводе тепла от источника с температурой T 1 в окружающую среду с температурой T 0 вправе записать e x = q · t = q (1 - ). Определим условия, при которых эти преобразования дадут максимально возможную работу в других циклах.

Пусть начальное состояние системы характеризуется точкой а , рис.1.8. При взаимо-действии с окружающей средой состояние с истемы стремится к равновесному, обозначенному точкойо. Процесс а-о не что иное, как переход системы из начального в равновесное состояние. Будем иметь в виду, что температура окружающей среды, несмотря н а ее взаимодействие с системой, остается постоянной и равнойT 0 . Используя уравнение первого закона термодинамики вида (1.15) и Рис. 1.8

и заменяя техническую работу эксэргией, получим:

e x = q a - o +(i 0 i а ). (1.27)

Изменение энтальпии не зависит от характера процесса. Поэтому, если известны начальное и конечное состояние системы, всегда можно определить разность энтальпий. Количество тепла является функцией процесс а-о . Для определения q a - o воспользуемся вторым законом термодинамики. Очевидно, что количество тепла, полученное окружающей средой q ср , равно количеству тепла, переданному системой среде, q а-о , т.е.

q ср = - q a - o (1.28)

Количество тепла q a - o пропорционально площади под кривой процесса (рис.1.8, пл.s o - o - a - s a ). Окружающая среда воспринимает теплоту в изотермическом процессе при T = T o . Начальное состояние этого процесса характеризуется точкой о , а конечное (точка о ) должно быть таким, чтобы пл. s o - o - o " - s o / , согласно (1.28), была равна пл. s o - o - a - s a .

Так как по второму закону термодинамики

dq ср = T o ds ср ,

то после интегрирования этого выражения от состояния о до состояния а будет иметь:

q cp = T 0 (s 0" -s a ) = T 0 (s a –s 0 ) + T 0 (s 0 - s a ). (1.29)

Тогда с учетом (1.28) выражение (1.27) запишется:

e x = (i a i o ) – T o (s a s o ) – T o (s o / - s a ). (1.30)

Из уравнения (1.30) следует ряд важных выводов:

1. В системе при обратимых процессах эксэргия больше, чем в той-же системе с необратимыми процессами, т.к. T 0 (s 0/ - s a ) ≥ 0.

2. Чем больше значение начальной энтропии системы s a , тем меньшую работу может она совершить при неизменной разности энтальпий (i a i 0 ). Следовательно, энтропия характеризует энергию системы.

– пределяет условия, необходимые для взаимного преобразования таких форм энергообмена, как теплота и работа;

– устанавливает полноту преобразования теплоты в работу.

1.2.5 Понятие о третьем законе термодинамики

При изучении свойств различных веществ в условиях низких температур, близких к абсолютному нулю = 0), обнаруживается важная закономерность в поведении реальных тел: в области абсолютного нуля энтропия тела в любом равновесном состоянии не зависит от температуры, объема и других параметров, характеризующих состояние тела.

Этот результат, являющийся обобщением ряда опытных данных и не вытекающий непосредственно из первого или второго законов термодинамики, составляет содержание тепловой теоремы Нернста .

Из теоремы следует, что в каком бы состоянии - жидком или твердом, в виде чистого вещества или химического соединения - ни существовало вещество, его энтропия при Т→ 0 имеет одно и то же значение. Постоянство энтропии при Т→ 0 означает, что в области абсолютного нуля dq всегда равно нулю. Следовательно, нельзя достигнуть абсолютного нуля с помощью отвода теплоты от тела, поскольку при T→ 0 каждое из тел при любом процессе изменения состояния сохраняет неизменное значение энтропии, т.е. перестает отдавать теплоту окружающей среде.

В. Нернст, используя квантовую теорию М. Планка, пришел к выводу, что lim ∆s T → 0 = 0. (1.31)

Отсюда и формулировка третьего закона термодинамики.

При температуре абсолютного нуля энтропия всех веществ в состоянии равновесия независимо от давления, плотности и фазы обращается в нуль.

Аналитическим выражением третьего закона термодинамики является равенство (1.31).



Первый закон термодинамики представляет собой закон сохранения энергии применительно к термодинамическим процессам: энергия не исчезает в никуда и не возникает из ничего, а лишь переходит из одного вида в другой в эквивалентных количествах. Примером может послужить переход теплоты (тепловой энергии) в механическую энергию, и наоборот.

Если к М кг газа, занимающего объем V (м 3) при температуре Т подвести при постоянном давлении некоторое количество теплоты dQ , то в результате этого температура газа повысится на dT , а объем – на dV . Повышение температуры связано с увеличением кинетической энергии движения молекул dK .
Увеличение объема сопровождается увеличением расстояния между молекулами и, как следствие, уменьшением потенциальной энергии dH взаимодействия между ними. Кроме того, увеличив объем, газ совершает работу dA по преодолению внешних сил.
Если, кроме указанных, никаких иных процессов в рабочем теле не происходит, то на основании закона сохранения энергии можно записать:

dQ = dK + dH + dA .

Сумма dK + dH представляет собой изменение внутренней энергии dU молекул системы в результате подвода теплоты.
Тогда формулу сохранения энергии для термодинамического процесса можно записать в виде:

dQ = dU + dA или dQ = dU + pdV .

Это уравнение представляет собой математическое выражение первого закона термодинамики : количество теплоты dQ , подводимое к системе газа, затрачивается на изменение ее внутренней энергии dU и совершение внешней работы dA .

Условно считают, что при dQ > 0 теплота сообщается рабочему телу, а при dQ < 0 теплота отнимается от тела. При dA > 0 система совершает работу (газ расширяется) , а при dA < 0 работа совершается над системой (газ сжимается) .

Для идеального газа, между молекулами которого нет взаимодействия, изменение внутренней энергии dU полностью определяется изменением кинетической энергии движения (т. е. увеличением скорости молекул) , а изменение объема характеризует работу газа по преодолению внешних сил.

Первый закон термодинамики имеет еще одну формулировку: энергия изолированной термодинамической системы остается неизменной независимо от того, какие процессы в ней протекают .
Невозможно построить вечный двигатель первого рода, т. е. периодически действующую машину, которая совершала бы работу без затраты энергии.



Второй закон термодинамики

Первый закон термодинамики описывает количественные соотношения между параметрами термодинамической системы, имеющими место в процессах преобразования тепловой энергии в механическую и наоборот, но не устанавливает условия, при которых эти процессы возможны. Эти условия, необходимые для преобразования одного вида энергии в другой, раскрывает второй закон термодинамики.

Существует несколько формулировок этого закона, и каждая из них имеет одинаковое смысловое содержание. Здесь приведены наиболее часто упоминающиеся формулировки второго закона термодинамики.

1. Для превращения теплоты в механическую работу необходимо иметь источник теплоты и холодильник, температура которого ниже температуры источника, т. е. необходим температурный перепад.

2. Нельзя осуществить тепловой двигатель, единственным результатом действия которого было бы превращение теплоты какого-либо тела в работу без того, чтобы часть теплоты не передавалась другим телам.
Из этой формулировки можно сделать вывод, что невозможно построить вечный двигатель, совершающий работу благодаря лишь одному источнику теплоты, поскольку любой, даже самый колоссальный источник теплоты в виде материального тела не способен отдать тепловой энергии больше, чем ему позволяет энтальпия (часть полной энергии тела, которую можно превратить в теплоту, охладив тело до температуры абсолютного нуля) .

3. Теплота не может сама по себе переходить от менее нагретого тела к более нагретому без затраты внешней работы.

Как видите, второй закон термодинамики не имеет в своей основе формулярнго содержания, а лишь описывает условия, при которых возможны те или иные термодинамические явления и процессы, подтверждая, по сути, общий закон сохранения энергии.

Второй закон связан с понятием энтропии, являющейся мерой хаоса (или мерой порядка). Второй закон термодинамики гласит, что для вселенной в целом энтропия возрастает.

Существует два классических определения второго закона термодинамики:

  1. Кельвина и Планка : Не существует циклического процесса, который извлекает количество теплоты из резервуара при определенной температуре и полностью превращает эту теплоту в работу. (Невозможно построить периодически действующую машину, которая не производит ничего другого, кроме поднятия груза и охлаждения резервуара теплоты)
  2. Клаузиуса : Не существует процесса, единственным результатом которого является передача количества теплоты от менее нагретого тела к более нагретому. (Невозможен круговой процесс, единственным результатом которого было бы производство работы за счет охлаждения теплового резервуара)

Оба определения второго закона термодинамики опираются на первый закон термодинамики, утверждающий, что энергия убывает. Второй закон связан с понятием энтропии (S) .

Энтропия порождается всеми процессами, она связана с потерей системы способности совершать работу. Рост энтропии - стихийный процесс. Если объем и энергия системы постоянны, то любое измение в системе увеличивает энтропию. Если же объем или энергия системы меняются, энтропия системы уменьшается. Однако, энтропия вселенной при этом не уменьшается.

Для того, чтобы энергию можно было использовать, в системе должны быть области с высоким и низким уровнями энергии. Полезная работа производится в результате передачи энергии от области с высоким уровнем энергии к области с низким уровнем энергии.

  • 100% энергии не может быть преобразовано в работу
  • Энтропия может вырабатываться, но не может быть уничтожена

Эффективность теплового двигателя

Эффективность теплового двигателя, действующего между двумя энергетическими уровнями, определена в пересчете на абсолютные температуры

  • η = (T h - T c) / T h = 1 - T c / T h
    • η = эффективность
    • T h = верхняя граница (K)
    • T c = нижняя граница температуры (K)

Для того, чтобы достичь максимальной эффективности T c должна быть на столько низкой, на сколько это возможно. Чтобы эффект был 100% -м, T c должна равнятся 0 по шкале Kельвина. Практически это невозможно, поэтому эффективность всегда меньше 1 (менее 100%).

  • Изменение энтропии > 0 Необратимый процесс
  • Изменение энтропии= 0 Двусторонний процесс (обратимый)
  • Изменение энтропии < 0 Невозможный процесс (неосуществимый)

Энтропия определяет относительную способность одной системы влиять на другую. Когда энергия двигается к нижнему энергетическому уровню, где уменьшается возможность влияния на окружающую среду, энтропия увеличивается.

Определение энтропии

Энтропия в системе постоянного объема определяется как:

  • dS = dH / T
    • S = энтропия (кДж/кг*К)
    • H = (кДж/кг) (иногда вместо dH записывают dQ = количество теплоты, сообщенное системе)
    • T = абсолютная температура (K - )

Изменение энтропии системы вызвано изменением содержания тепла в ней. Изменение энтропии равно изменению тепла системы деленной на среднюю абсолютную температуру (T a):

Тепловой цикл Карно. Цикл Карно— идеальный термодинамический цикл.

dS = dH / T a Сумма значений (dH / T) для каждого полного цикла Карно равна 0. Это происходит из-за того, что каждому положительному H противостоит отрицательное значение H.

В тепловом двигателе, газ (реверсивно) нагревается (reversibly heated), а затем охлаждается. Модель цика следующая: Положение 1 --() --> Положение 2 --() --> Положение 3 --(изотермическое сжатие) --> Положение 4 --(адиабатическое сжатие) --> Положение 1

  • Положение 1 - Положение 2: Изотермическое расширение
    • Изотермическое расширение. В начале процесса рабочее тело имеет температуру T h , то есть температуру нагревателя. Затем тело приводится в контакт с нагревателем, который изотермически (при постоянной температуре) передаёт ему количество теплоты Q H . При этом объём рабочего тела увеличивается. Q H =∫Tds=T h (S 2 -S 1) =T h ΔS
  • Положение 2 - Положение 3: Адиабатическое расширение
    • Адиабатическое (изоэнтропическое) расширение. Рабочее тело отсоединяется от нагревателя и продолжает расширяться без теплообмена с окружающей средой. При этом его температура уменьшается до температуры холодильника.
  • Положение 3 - Положение 4: Изотермическое сжатие
    • Изотермическое сжатие. Рабочее тело, имеющее к тому времени температуру T c , приводится в контакт с холодильником и начинает изотермически сжиматься, отдавая холодильнику количество теплоты Q c . Q c =T c (S 2 -S 1)=T c ΔS
  • Положение 4 - Положение 1: Адиабатическое сжатие
    • Адиабатическое (изоэнтропическое) сжатие. Рабочее тело отсоединяется от холодильника и сжимается без теплообмена с окружающей средой. При этом его температура увеличивается до температуры нагревателя.

При изотермических процессах температура остаётся постоянной, при адиабатических отсутствует теплообмен, а значит, сохраняется энтропия. Поэтому цикл Карно удобно представить в координатах T и S (температура и энтропия). Законы термодинамики были определены эмперическим путем (эксперементально). Второй закон термодинамики - это обощение экспериментов, связанных с энтропией. Известно, что dS системы плюс dS окружающей среды равно или больше 0 - закон неубывания энтропии . Энтропия адиабатически изолированной системы не меняется! 100 o C (373 K) при испарении = 2 258 кДж/кг

  • Изменение удельной энтропии:
  • dS = dH / T a = (2 258 - 0) / ((373 + 373)/2) = 6.054 кДж/кг*К

Полное изменение удельной энтропии испарения воды - это сумма удельной энтропии воды (при 0 o C) плюс удельная энтропия пара (при температуре 100 o C).

Необратимым называется физический процесс , который может самопроизвольно протекать только в одном определенном направлении.

В обратном направлении такие процессы могут протекать только как одно из звеньев более сложного процесса.

Необратимыми являются практически все процессы, происходящие в природе. Это связано с тем, что в любом реальном процессе часть энергии рассеивается за счет излучения, трения и т. д. Например, тепло, как известно, всегда переходит от более горячего тела к более холодному — это наиболее типичный пример необратимого процесса (хотя обратный переход не противоречит закону сохранения энергии).

Также висящий на легкой нити шарик (маятник) никогда самопроизвольно не увеличит ам-плитуду своих колебаний, наоборот, приведенный однажды в движение посторонней силой, он обязательно, в конце концов, остановится в результате сопротивления воздуха и трения нити о подвес. Таким образом, сообщенная маятнику механическая энергия переходит во внутреннюю энергию хаотического движения молекул (воздуха, материала подвеса).

Математически необратимость механических процессов выражается в том, что уравнение движения макроскопических тел изменяется с изменением знака времени: они не инвариантны при замене t на - t . При этом ускорение и силы, зависящие от расстояний, не изменяют свои знаки. Знак при замене t на - t меняется у скорости . Соответственно знак меняет сила , зависящая от скорости, — сила трения . Именно поэтому при совершении работы силами трения кинетическая энергия тела необратимо переходит во внутреннюю.

Направленность процессов в природе указывает второй закон термодинамики.

Второй закон термодинамики.

Второй закон термодинамики — один из основных законов термодинамики , устанавливающий необратимость реальных термодинамических процессов.

Второй закон термодинамики был сформулирован как закон природы Н. Л. С. Карно в 1824 г., затем У. Томсоном (Кельвином) в 1841 г. и Р. Клаузиусом в 1850 г. Формулировки закона различны, но эквивалентны.

Немецкий ученый Р. Клаузиус формулировал закон так: невозможно перевести теплоту от более холодной системы к более горячей при отсутствии других одновременных изменений в обеих системах или окружающих телах. Это означает, что теплота не может самопроизвольно пере-ходить от более холодного тела к более горячему (принцип Клаузиуса ).

Согласно формулировке Томсона процесс, при котором работа переходит в тепло без каких-либо иных изменений состояния системы, необратим, т. е. невозможно преобразовать в работу все тепло, взятое от тела, не производя никаких других изменений состояния системы (принцип Томсона ).