Таблица определения ионов по химии. Качественное определение ионов неорганических веществ

Таблица определения ионов по химии. Качественное определение ионов неорганических веществ

А) Определение хлорид-ионов

Ионометрический анализ природной и питьевой воды на содержание ионов основан на измерении величины равновесного потенциала ионоселективного мембранного электрода, погруженного в раствор анализируемого иона. Потенциал измеряют относительно электрода сравнения, снабженного солевым мостиком, заполненным 1М раствором нитрата калия, с помощью мономера (см. рис. 12.1).

При потенциометрических измерениях, проводимых для определения концентраций отдельных веществ методом прямой потенциометрии или методом потенциометрического титрования, монтируют ячейку, состоящую из индикаторного электрода и электрода сравнения. Как правило, она представляет собой обычный химический стакан. Раствор в ячейке перемешивают при помощи механической или магнитной мешалки.

Концентрацию анализируемого иона находят по калибровочному графику. График строят в координатах «Е - (-lgС)».

Оборудование и реагенты

Ионоселективный электрод на ион С1 .

Пипетки мерные на 10 мл.

Стаканы стеклянные на 100, 250 мл.

Бумага фильтровальная.

Хлорид калия.

Нитрат калия, 1М раствор.

По точной навеске готовят серию стандартных растворов хлорида калия (10 "-10 ’М) с постоянной ионной силой, создаваемой 1М раствором нитрата калия. Снимают зависимость потенциала ионоселективного электрода от концентрации хлорида калия и строят калибровочный график. Измерения проводят в порядке возрастания концентрации растворов. После каждого измерения электроды промывают дистиллированной водой и осушают фильтровальной бумагой. По результатам измерений строят калибровочный график.

С х (моль/л) хлорид-ионов в питьевой и природной воде, пользуясь построенным калибровочным графиком.

Концентрацию хлорид-ионов (г/л) вычисляют в граммах по формуле

Результаты измерений заносят в форму табл. 12.8.

Таблица 12.8

Результаты ионометрического определения ионов хлора в воде

Б) Определение фторид-ионов

При анализе природных и производственных объектов следует помнить, что ион F в кислых растворах или в присутствии ионов Fe 3+ и Л1 3+ находится в виде слабодиссоциирующей кислоты HF и фторидных комплексов указанных металлов. Поэтому в растворе доводят pH до значения 5-7, а также добавляют цитрат натрия, который образует с ионами железа и алюминия более прочные комплексы.

Оборудование и реагенты

Индикаторный электрод - ионоселективный электрод на ион F . Перед работой выдерживают электрод в 0,001М NaF в течение суток. Перед измерением промывают и оставляют на 10-20 мин в дистиллированной воде, затем высушивают фильтровальной бумагой.

Электрод сравнения, хлоридсеребряный.

Стаканы полиэтиленовые емкостью от 50 мл.

Колбы мерные, на 100 мл 6 шт., на 1000 мл 1 шт.

Цилиндры емкостью 50, 100, 1000 мл.

Пипетки мерные на 10 и 25 мл.

Стандартный раствор - 0,1 М раствор фторида натрия (навеску 4,200 г растворяют в мерной колбе емкостью 1000 мл).

Фоновый раствор - 1М раствор сульфат натрия (навеску 142 г Na 2 S0 4 или 322 г Na 2 S0 4 ? ЮН 2 0 растворяют в мерной колбе емкостью 1000 мл).

Азотная кислота, 0,01М раствор.

Аммиак, 0,01М водный раствор.

Описание определения

При подготовке растворов к измерениям в стандартные и анализируемые растворы вводят одинаковый избыток фонового электролита. В этом случае можно полагать, что во всех растворах ионная сила постоянна.

Из основного стандартного раствора с концентрацией фторид-иона 10 "М готовят последовательным разбавлением его раствором 1М Na 2 S0 4 шесть растворов с концентрациями NaF (М): 10 ", 10" 2 , 10 3 , 10 10 5 , 10 6 . Для этого отбирают пипеткой 10 мл 10 "М раствора NaF в мерную колбу на 100 мл и доводят фоновым раствором (1М Na 2 S0 4) объем до метки. Из полученного раствора 10 2 М NaF последовательным разбавлением фоновым раствором по аналогичной методике готовят остальные растворы. Начиная с раствора с наименьшей концентрацией последовательно во всех стандартных растворах измеряют потенциал фторселективного электрода и результаты измерений записывают в форму таблицы, аналогичной табл. 9.8. По результатам измерений строят калибровочный график.

При определении концентрации фторид-иона в анализируемом растворе необходимо приготовить раствор с той же ионной силой. Для этого 5 мл исследуемого раствора разводят 1М Na 2 S0 4 в колбе на 50 мл. Индикаторной бумагой проверяют pH и доводят его 0,01М HNO:j или NH 4 OH до значения 5,0-5,5.

Измеряют потенциал фторселективного электрода в этом растворе. По калибровочному графику определяют значение рХ = -lg. Результаты записывают в форму таблицы.

Следует определить содержание фторид-иона в контрольных задачах, проверить ответ у преподавателя и вычислить относительную погрешность измерений.

В) Определение нитрат-ионов

Ионометрический анализ природной и питьевой воды на содержание нитрат-ионов основан на измерении величины равновесного потенциала ионоселективного мембранного электрода, погруженного в раствор анализируемого иона. В состав мембраны входит жидкий ионообменник с четвертичными аммониевыми солями. Потенциал измеряют на мономере относительно хлоридсеребряного электрода, заполненного насыщенным раствором хлорида калия.

Оборудование и реагенты

Ионоселективный электрод на ион NQ.,-hoh.

Хлоридсеребряный электрод сравнения.

Пипетки на 10 мл.

Стаканы стеклянные на 100 и 250 мл.

Хлорид калия.

Нитрат калия, 10 "М раствор.

Сульфат калия, 1М раствор.

1. Определение нитрат-ионов по методу калибровочного графика.

По точной навеске готовят стандартный раствор нитрата калия 10 "М. Последовательным разбавлением исходного стандартного раствора готовят растворы 10 2 -10 5 М с постоянной ионной силой, создаваемой 1М раствором сульфата калия (фон Л). Снимают зависимость потенциала ионоселективного электрода от концентрации нитрата калия. Результаты измерений вносят в форму таблицы, аналогичной табл. 9.8. Строят калибровочный график. Измерения проводят в порядке возрастания концентрации растворов. После каждого измерения электроды промывают дистиллированной водой и осушают фильтровальной бумагой.

Измеряют значения равновесных потенциалов анализируемых растворов. Определяют концентрацию С х (моль/л) нитратов в питьевой и природной воде, пользуясь построенным калибровочным графиком. Результаты вносят в форму таблицы.

Концентрацию нитрат-ионов в г/л вычисляют по формуле

где М(N0 3) - молярная масса иона, равная 62,01 г/моль.

2. Определение нитрат-ионов по методу добавок.

По точной навеске готовят стандартный 10 "М раствор нитрата калия. Последовательным разбавлением исходного стандартного раствора готовят растворы с концентрациями 10 2 -10 J M с постоянной ионной силой, создаваемой 1М раствором сульфата калия (фон А). Снимают зависимость потенциала ионоселективного электрода от концентрации нитрата калия и строят калибровочный график. Измерения проводят в порядке возрастания концентрации раствора. После каждого измерения электроды промывают дистиллированной водой и осушают фильтровальной бумагой. Результаты измерений оформляют в форме табл. 12.9.

Таблица 12.9

Результаты измерения потенциала в зависимости от pNO: , для построения калибровочного графика

Значение ионной силы рассчитывают для каждого раствора по формуле

Чем больше ионная сила раствора, тем меньше коэффициент активности каждого иона и меньше его активная концентрация.

Коэффициент активности находят по табличным данным (табл. 12.10) или по формуле Дебая - Гюккеля

Значения коэффициентов активности

Значение pN0 3 вычисляют как отрицательный логарифм активности нитрат-иона:

Строят график зависимости «Е - pN0 3 » и определяют крутизну (5) электродной функции (в милливольтах). Полученное значение крутизны используют в расчетной формуле в методе добавок. Следует отметить, как оно отличается от теоретического значения (0,0591/и при 25°С).

Для определения концентрации нитрит-иона в анализируемой пробе необходимо измерить потенциал (/;) до и после добавок стандартного раствора KNO ;j . Для этого аликвотную часть 20,00 мл анализируемого раствора помещают в сухой стакан, опускают в него электроды и измеряют потенциал (?,). Затем добавляют по 2-3 капли стандартного раствора KN0 3 , пользуясь микропипеткой на 1-2 мл. После каждой добавки перемешивают раствор магнитной мешалкой. Затем измеряют потенциал (? 2) и определяют его изменение по отношению к анализируемому раствору (ДЕ = Е., - ?,). Добиваются изменения АЕ не менее чем на 30 мВ, вводя 2-3 добавки к одной порции образца.

Рассчитывают результат определения по нескольким добавкам, зная объем Р ст добавленного раствора с концентрацией С ст, объем анализируемого раствора V r (20 мл) и пренебрегая разбавлением, по формуле

где АЕ - наблюдаемое изменение потенциала после добавки, мВ; 5 - крутизна электродной функции, установленная по графику, мВ. Содержание нитрат-ионов (в г/л) в анализируемом растворе вычисляют по формуле

где M(NQ 3) - молярная масса иона, равная 62,01 г/моль.

Частица, в которой содержится разное число протонов и электронов, называется ионом. Если количество протонов больше, ион приобретает положительный заряд и становится катионом. Ионы с отрицательным зарядом (преобладают электроны) называются анионами.

Общее описание

Впервые в химии понятие «ион» появилось в 1834 году благодаря экспериментам Майкла Фарадея. Учёный изучал электропроводность водных растворов кислот, солей, щелочей. Он предположил, что возможность проводить электричество обусловлена движением в растворе заряженных частиц - ионов.

Молекулы способны распадаться на ионы - атомы с недостатком или избытком электроном. Процесс распада называется электролитической диссоциацией, а образованный раствор или расплав - электролитом. Если опустить в раствор электролита электрод, катионы начнут двигаться к катоду - отрицательному полюсу, анионы - к аноду - положительному полюсу. Этим объясняется электропроводность электролитов.

Рис. 1. Движение ионов под действием электрода.

В растворах или в расплавах ионы образуются под действием молекул воды или высокой температуры.

Строение

Ионы состоят из ядра и электронов, движущихся вокруг. Ядро образуют положительно заряженные частицы (протоны) и нейтральные частицы (нейтроны). Количество протонов совпадает с порядковым номером элемента. Количество нейтронов равно значению разницы между относительной атомной массой и количеством протонов.

Электроны располагаются на энергетических уровнях. Количество уровней совпадает с периодом, в котором находится элемент. На внешнем энергетическом уровне находятся валентные электроны, которые могут взаимодействовать с другими атомами. При отдаче валентных электронов атом превращается в катион, при присоединении дополнительного электрона становится анионом.

Например, если к атому хлора присоединить ещё один электрон он станет отрицательно заряженным ионом - анионом. А если у атома натрия отнять один электрон, он станет положительно заряженным ионом - катионом, т.к. количество протонов станет больше, чем отрицательных электронов.

Катионы в уравнениях отмечаются плюсом, а анионы - минусом. Например, Fe 2+ , Al 3+ , Na + , F – , Cl – . Цифра означает, сколько электронов отдал или принял атом, став ионом, т.е. показывает степень окисления. Количество катионов или анионов можно посмотреть по таблице растворимости веществ.

Рис. 2. Таблица растворимости.

Классификация

Ионы делятся на две группы:

  • простые или моноатомные - содержат одно ядро, т.е. состоят из одного атома вещества;
  • сложные или полиатомные - содержат минимум два ядра, т.е. состоят из двух и более атомов вещества.

К простым ионам относятся катионы и анионы металлов и неметаллов - Na + , Mg 2+ , Cl – . Сложные ионы образуются при присоединении иона к нейтральным молекулам вещества. Например:

  • NH 3 + H + → NH 4 + ;
  • BF 3 + F – → BF 4 – .

Катионами являются ионы металлов, водорода, аммония и некоторых других веществ. Анионами являются гидроксид-ион (OH –), ионы кислотных остатков, неметаллов и других веществ.

Некоторые атомы могут становиться катионами или анионами в зависимости от реакции.

Также выделяют ион-радикалы - свободные заряженные частицы, способные присоединять атомы или присоединяться к атомам других веществ. В зависимости от заряда делятся на китионы-радикалы и анионы-радикалы.

Ионная связь - класс соединения ионов. Ионная связь возникает в результате электростатического притяжения анионов и катионов. При этом атом с большей электроотрицательностью притягивает атом с меньшей электроотрицательностью. Ионная связь возникает преимущественно между ионами металлов и неметаллов. Металл всегда отдаёт электроны, т.е. является восстановителем.

Рис. 3. Схема ионной связи.

Что мы узнали?

Из темы урока узнали, что такое ионы. Атом становится ионом при отщеплении или присоединении электронов. Если электронов становится меньше, то атом приобретает положительный заряд за счёт преобладания протонов и становится катионом. При увеличении количества отрицательно заряженных электронов атом становится анионом. Ионы способны передавать электричество и обязательно присутствуют в электролитах. Между ионами возникает ионная связь за счёт электростатического притяжения отрицательных и положительно заряженных частиц.

Тест по теме

Оценка доклада

Средняя оценка: 4.6 . Всего получено оценок: 126.

Представим себе такую ситуацию:

Вы работаете в лаборатории и решили провести какой-либо эксперимент. Для этого вы открыли шкаф с реактивами и неожиданно увидели на одной из полок следующую картину. У двух баночек с реактивами отклеились этикетки, которые благополучно остались лежать неподалеку. При этом установить точно какой банке соответствует какая этикетка уже невозможно, а внешние признаки веществ, по которым их можно было бы различить, одинаковы.

В таком случае проблема может быть решена с использованием, так называемых, качественных реакций .

Качественными реакциями называют такие реакции, которые позволяют отличить одни вещества от других, а также узнать качественный состав неизвестных веществ.

Например, известно, что катионы некоторых металлов при внесении их солей в пламя горелки окрашивают его в определенный цвет:

Данный метод может сработать только в том случае, если различаемые вещества по разному меняют цвет пламени, или же одно из них не меняет цвет вовсе.

Но, допустим, как назло, вам определяемые вещества цвет пламени не окрашивают, или окрашивают его в один и тот же цвет.

В этих случаях придется отличать вещества с применением других реагентов.

В каком случае мы можем отличить одно вещество от другого с помощью какого-либо реагента?

Возможны два варианта:

  • Одно вещество реагирует с добавленным реагентом, а второе нет. При этом обязательно, должно быть ясно видно, что реакция одного из исходных веществ с добавленным реагентом действительно прошла, то есть наблюдается какой-либо ее внешний признак — выпадал осадок, выделился газ, произошло изменение цвета и т.п.

Например, нельзя отличить воду от раствора гидроксида натрия с помощью соляной кислоты, не смотря на то, что щелочи с кислотами прекрасно реагируют:

NaOH + HCl = NaCl + H 2 O

Связано это с отсутствием каких-либо внешних признаков реакции. Прозрачный бесцветный раствор соляной кислоты при смешении с бесцветным раствором гидроксида образует такой же прозрачный раствор:

Но зато, можно воду от водного раствора щелочи можно различить, например, с помощью раствора хлорида магния – в данной реакции выпадает белый осадок:

2NaOH + MgCl 2 = Mg(OH) 2 ↓+ 2NaCl

2) также вещества можно отличить друг от друга, если они оба реагируют с добавляемым реагентом, но делают это по-разному.

Например, различить раствор карбоната натрия от раствора нитрата серебра можно с помощью раствора соляной кислоты.

с карбонатом натрия соляная кислота реагирует с выделением бесцветного газа без запаха — углекислого газа (СО 2):

2HCl + Na 2 CO 3 = 2NaCl + H 2 O + CO 2

а с нитратом серебра с образованием белого творожистого осадка AgCl

HCl + AgNO 3 = HNO 3 + AgCl↓

Ниже в таблицах представлены различные варианты обнаружения конкретных ионов:

Качественные реакции на катионы

Катион Реактив Признак реакции
Ba 2+ SO 4 2-

Ba 2+ + SO 4 2- = BaSO 4 ↓

Cu 2+ 1) Выпадение осадка голубого цвета:

Cu 2+ + 2OH − = Cu(OH) 2 ↓

2) Выпадение осадка черного цвета:

Cu 2+ + S 2- = CuS↓

Pb 2+ S 2- Выпадение осадка черного цвета:

Pb 2+ + S 2- = PbS↓

Ag + Cl −

Выпадение белого осадка, не растворимого в HNO 3 , но растворимого в аммиаке NH 3 ·H 2 O:

Ag + + Cl − → AgCl↓

Fe 2+

2) Гексацианоферрат (III) калия (красная кровяная соль) K 3

1) Выпадение белого осадка, зеленеющего на воздухе:

Fe 2+ + 2OH − = Fe(OH) 2 ↓

2) Выпадение синего осадка (турнбулева синь):

K + + Fe 2+ + 3- = KFe↓

Fe 3+

2) Гексацианоферрат (II) калия (желтая кровяная соль) K 4

3) Роданид-ион SCN −

1) Выпадение осадка бурого цвета:

Fe 3+ + 3OH − = Fe(OH) 3 ↓

2) Выпадение синего осадка (берлинская лазурь):

K + + Fe 3+ + 4- = KFe↓

3) Появление интенсивно-красного (кроваво-красного) окрашивания:

Fe 3+ + 3SCN − = Fe(SCN) 3

Al 3+ Щелочь (амфотерные свойства гидроксида)

Выпадение белого осадка гидроксида алюминия при приливании небольшого количества щелочи:

OH − + Al 3+ = Al(OH) 3

и его растворение при дальнейшем приливании:

Al(OH) 3 + NaOH = Na

NH 4 + OH − , нагрев Выделение газа с резким запахом:

NH 4 + + OH − = NH 3 + H 2 O

Посинение влажной лакмусовой бумажки

H +
(кислая среда)

Индикаторы:

− лакмус

− метиловый оранжевый

Красное окрашивание

Качественные реакции на анионы

Анион Воздействие или реактив Признак реакции. Уравнение реакции
SO 4 2- Ba 2+

Выпадение белого осадка, не растворимого в кислотах:

Ba 2+ + SO 4 2- = BaSO 4 ↓

NO 3 −

1) Добавить H 2 SO 4 (конц.) и Cu, нагреть

2) Смесь H 2 SO 4 + FeSO 4

1) Образование раствора синего цвета, содержащего ионы Cu 2+ , выделение газа бурого цвета (NO 2)

2) Возникновение окраски сульфата нитрозо-железа (II) 2+ . Окраска от фиолетовой до коричневой (реакция «бурого кольца»)

PO 4 3- Ag +

Выпадение светло-желтого осадка в нейтральной среде:

­3Ag + + PO 4 3- = Ag 3 PO 4 ↓

CrO 4 2- Ba 2+

Выпадение желтого осадка, не растворимого в уксусной кислоте, но растворимого в HCl:

Ba 2+ + CrO 4 2- = BaCrO 4 ↓

S 2- Pb 2+

Выпадение черного осадка:

Pb 2+ + S 2- = PbS↓

CO 3 2-

1) Выпадение белого осадка, растворимого в кислотах:

Ca 2+ + CO 3 2- = CaCO 3 ↓

2) Выделение бесцветного газа («вскипание»), вызывающее помутнение известковой воды:

CO 3 2- + 2H + = CO 2 + H 2 O

CO 2 Известковая вода Ca(OH) 2

Выпадение белого осадка и его растворение при дальнейшем пропускании CO 2:

Ca(OH) 2 + CO 2 = CaCO 3 ↓ + H 2 O

CaCO 3 + CO 2 + H 2 O = Ca(HCO 3) 2

SO 3 2- H +

Выделение газа SO 2 с характерным резким запахом (SO 2):

2H + + SO 3 2- = H 2 O + SO 2

F − Ca 2+

Выпадение белого осадка:

Ca 2+ + 2F − = CaF 2 ↓

Cl − Ag +

Выпадение белого творожистого осадка, не растворимого в HNO 3 , но растворимого в NH 3 ·H 2 O (конц.) :

Ag + + Cl − = AgCl↓

AgCl + 2(NH 3 ·H 2 O) = }