Простая схема управления трехфазным инвертором напряжения. Схема источника трехфазного напряжения Трехфазный задающий генератор на микроконтроллере

Простая схема управления трехфазным инвертором напряжения. Схема источника трехфазного напряжения Трехфазный задающий генератор на микроконтроллере
Простая схема управления трехфазным инвертором напряжения. Схема источника трехфазного напряжения Трехфазный задающий генератор на микроконтроллере

В настоящей статье рассмотрена схема несложного устройства, позволяющего реализовать управление силовой схемой частотного асинхронного привода. Статья ориентирована на радиолюбителей, интересующихся разработкой и изготовлением самодельных регуляторов частоты вращения асинхронных двигателей, в том числе при питании их от бытовой однофазной сети.

Важное замечание. В статье не рассматриваются вспомогательные системы, без которых построение законченной схемы привода невозможно, а именно: источники питания всех узлов привода, схема сопряжения низковольтной схемы управления и силовой схемы инвертора (драйверы силовых ключей), собственно силовая схема инвертора. Разработка этих узлов остается на усмотрение читателей.

Частотно-управляемый (или регулируемый) асинхронный привод (далее просто привод) обычно строится по схеме "питающая сеть - выпрямитель - фильтр - трехфазный инвертор напряжения - приводимый асинхронный двигатель (далее - АД)". Питающая сеть может быть как бытовой однофазной, так и промышленной трехфазной, соответственно и выпрямитель делается одно- или трех-фазным. В качестве фильтра, как правило, используются Г-образные LC-фильтры, в системах малой мощности допустимо применение обычного сглаживающего С-фильтра.

Наиболее сложным узлом является инвертор напряжения. Последние годы он строится на основе полноуправляемых силовых ключей - транзисторов (MOSFET или IGBT), а еще совсем недавно применялись схемы на полууправляемых ключах (тиристорах). Задача инвертора - получение из постоянного напряжения регулируемого по частоте и действующему значению трехфазного напряжения. Регулирование частоты особой сложности не вызывает, а вот для регулирования действующего значения напряжения приходится применять ШИМ модуляцию, что далеко не просто.

Управление силовыми ключами инвертора осуществляет по определенному алгоритму специальный управляющий контроллер (иначе говоря - схема управления). Алгоритм управления подразумевает не только реализацию функций регулирования частоты и действующего значения выходного напряжения, но так же и реализацию защиты силовых ключей от перегрузок и КЗ. В некоторых случаях дополнительно реализуются функции регулирования момента на валу АД и другие специфические задачи, неактуальные для любительского применения.

Разработка схемы управления инвертором с полным набором функций - задача слишком сложная, чтобы рекомендовать ее широкому кругу любителей электроники, однако в усеченном, но достаточном для бытового применения (и даже для некоторых особых промышленных случаев, например, приводов вентиляции) решить ее возможно - см. статьи в журналах Радио №4 за 2001 г. и №12 за 2003 г (можно скачать из ). К сожалению, в этих конструкциях есть несколько недостатков, в частности, невысокая стабильность параметров из-за смешанного полуаналогового-полуцифрового подхода, непроработанность систем защиты и др. Попытка избавиться от этих недостатков и одновременно расширить функциональные возможности системы управления вылилась в создание схемы управления инвертором напряжения на недорого микроконтроллере (см. Рисунок 1 ), которая и предлагается к повторению.

Рисунок 1. Принципиальная схема

Краткие характеристики и особенности:

  • формирование последовательности импульсов управления силовыми ключами по алгоритму, реализующему линейную зависимость действующего значения напряжения от частоты;
  • регулирование частоты выходного напряжения инвертора от 5 до 50 Гц;
  • быстродействующая защита силовых ключей инвертора от токов КЗ;
  • возможность использования в качестве датчика тока схемы защиты как специализированного датчика (например, фирмы LEM ), так и обычного шунта;
  • возможность подключения дополнительного дисплея с последовательным интерфейсом для индикации текущей и заданной частоты;
  • чрезвычайная простота схемы - всего 4 микросхемы, включая микроконтроллер.

В схеме используется недорогой микроконтроллер AT89C2051-24PI . Он реализует все требуемые функции по специально разработанной программе.

Разъем XP3 служит для подключения напряжения питания схемы управления 5 В (контакты 1 и 4), а так же для подключения к схеме драйверов силовых ключей инвертора (контакты 12 - 17).

Разъем XP1 служит для подключения сигнала с датчика тока инвертора. Если используется датчик тока фирмы LEM или аналогичный, то обязательно наличие нагрузочного резистора R0 , его сопротивление определяется типом датчика. Если в качестве датчика используется шунт, то этот резистор не нужен. Шунт должен быть рассчитан так, чтобы при наличии тока КЗ в цепи постоянного тока инвертора на нем падало напряжение от 3 до 5 В. Если напряжение существенно ниже, может потребоваться дополнительный каскад усиления.

Схема защиты построена на компараторе DA1A и триггере DD1.1 и работает так. Напряжение с датчика тока через защитную цепь R1 -VD1 поступает на неинвертирующий вход компаратора DA1.A , а на инвертирующий его вход поступает пороговое напряжение с подстроечного резистора R2 . Когда напряжение с датчика тока превысит пороговое, компаратор сработает, и высокий логический уровень с его выхода поступит на тактовый вход триггера DD1.1 , который переключится и сигналом со своего вывода 5 переведет микроконтроллер в состояние сброса. При включении питания триггер DD1.1 устанавливается в состояние сброса при помощи цепи R5 -C1 . Чтобы сбросить схему защиты в рабочее положение и запустить тем самым инвертор, следует кратковременно нажать на кнопку SB1 .

Когда поступление сигнала сброса на микроконтроллер DD2 прекратится, он начнет выполнение своей программы. Сначала происходит внутренняя инициализация микроконтроллера, а затем подается сигнал разрешения работы шинного буфера DD3 "GATE ". Этот буфер используется для быстрого отключения выходных управляющих сигналов при срабатывании защиты, т.к. при поступлении сигнала сброса на микроконтроллер на всех его выходных портах устанавливается высокий логический уровень, в том числе и на линии "GATE ", что переводит выходы DD3 в Z-состояние. Благодаря резисторам R9 -R14 на выходах схемы управления, помеченных "VT1 " - "VT6 ", устанавливается низкий логический уровень, что соответствует запертому состоянию всех силовых ключей инвертора. Светодиод HL1 индицирует режим работы схемы управления: зеленое свечение "работа", красное - "защита".

Такое построение схемы защиты обусловлено тем, что быстродействия современных недорогих микроконтроллеров явно недостаточно для реализации защиты программными средствами. Это относится не только к используемому микроконтроллеру, но так же и к более быстродействующим AVR и PIC.

При помощи резистора R8 устанавливается желаемое значение частоты выходного напряжения инвертора. Вне зависимости от положения движка R8 , сразу после начала работы инвертор формирует выходные сигналы для частоты напряжения в 5 Гц. Затем, проанализировав положение движка этого резистора, микроконтроллер начинает постепенное повышение частоты до заданного уровня. Изменение частоты происходит дискретно с шагом в 1 Гц, причем скорость изменения установлена в 2 Гц/сек. Это сделано для исключения скачкообразного изменения выходной частоты, что может привести к возникновению ударных токов в АД и механическим перегрузкам в приводном механизме.

К разъему XP2 можно подключить дисплей с последовательным интерфейсом, при помощи которого отображаются заданное и текущее значения частоты, для работы схемы наличие дисплея необязательно. В авторском варианте применен на шести семисегментных светодиодных индикаторах и шести регистрах с последовательным вводом и параллельным выводом данных.

Рисунок 2 Чертеж сторон печатной платы

Рисунок 3 Расположение элементов на плате.

Для схемы управления разработана печатная плата (см. Рисунок 2 ). Размещение элементов схемы показывает Рисунок 3 . В качестве разъемов использованы штыревые вилки типа PLS . Микроконтроллер DD2 устанавливается в панель, чтобы обеспечить возможность перепрограммирования. Двухцветный светодиод - любой, кристалл красного свечения подключается к резистору R16 . Кнопка SB1 - любая тактовая, подстроечный резистор R3 типа СП5-16 , переменный R8 - любой. Тип резисторов и конденсаторов принципиального значения не имеет, важно только, чтобы напряжение электролитических конденсаторов было не менее 10 В. Неэлектролитические конденсаторы - дисковые керамические.

Алгоритм работы схемы управления поясняют диаграммы выходных сигналов и соответствующие им диаграммы выходных напряжений инвертора (при активной нагрузке) - см. Рисунок 4 и Рисунок 5 . Длительность импульсов 1,11 миллисекунды, а длительность паузы между ними (внутри пачки) зависит от частоты, и при частоте выходного напряжения инвертора 50 Гц составляет около 20 микросекунд (защитный интервал, полностью исключающий возможность возникновения сквозных токов в инверторе).

Рисунок 4 Диаграмма выходных сигналов схемы управления

Рисунок 5 Форма выходных напряжений инвертора при активной нагрузке

Схема управления была испытана с использованием мощного инвертора на IGBT транзисторах MBN1200C33 (HITACHI), к которому подключался АД мощностью 55 кВт с номинальной частотой вращения 1500 мин-1, нагруженный на центробежный вентилятор. Сбоев в работе схемы управления не было. Фактическую форму напряжений на выходе инвертора с вышеуказанным АД демонстрируют осциллограммы - см. Рисунок 6 и Рисунок 7 .

Рисунок 6 Фазные напряжения на двигателе

Рисунок 7 Фазные напряжения на двигателе

Качественные изображения схемы, рисунка проводников печатной платы, бинарный файл прошивки, можно скачать в , а некоторые дополнительные сведения об особенностях построения остальных, не рассмотренных в настоящей статье, узлов привода и инвертора можно получить из дополнительной статьи-приложения, находящейся там же.


(3) | Просмотров: 132858

Трёхфазные асинхронные двигатели находят широкое применение в промышленности и в быту благодаря своей простоте и надёжности. Отсутствие искрящего и греющегося коллекторнощёточного узла, а также простая конструкция ротора обуславливают долгий срок их эксплуатации, упрощают профилактику и обслуживание. Однако при необходимости регулировать частоту вращения вала такого двигателя возникают сложности. Для этого обычно применяют специальные преобразователи, называемые частотными регуляторами, изменяющие частоту питающего двигатель напряжения. Такие регуляторы нередко позволяют питать трёхфазный двигатель от однофазной сети, что особенно актуально при их применении в быту.

Частотным регуляторам посвящено довольно много статей, например, . К сожалению, большинство описанных конструкций не очень подходят для повторения, поскольку они либо слишком сложны , либо (как регулятор, описанный в ) построены из дорогих деталей, стоимость которых достигает половины стоимости регулятора промышленного изготовления. Дополнительные функции регулятора необходимы далеко не всегда. Поэтому для многих простых применений такой регулятор невыгоден. Устройство, описанное в , несложно по схеме, но организовать плавное регулирование частоты вращения с его помощью затруднительно.

Оптимальным для повторения можно считать устройство, описанное в , если его немного упростить. Оно построено на дешёвых широко распространённых микросхемах, поэтому нет нужды покупать дорогостоящие микроконтроллеры или специализированные модули. В описываемом в настоящей статье устройстве из оставлен только формирователь импульсов управления. Остальное изменено с целью упрощения.

Как известно, при уменьшении частоты питающего двигатель напряжения необходимо пропорционально снижать и его амплитуду. Проще всего это делать с помощью широтно-импульсной модуляции формируемого напряжения. В для этого использованы отдельный генератор и пять микросхем. Это не очень удобно, поскольку требует применять для управления двигателем сдвоенный переменный резистор и налаживать два генератора, да и число микросхем можно сократить.

Я использовал другой способ реализации широтно-импульсной модуляции, позволяющий упростить устройство и его налаживание. Теперь оно состоит из регулируемого по частоте генератора импульсов постоянной длительности, счётчика-делителя частоты следования импульсов генератора на три, формирователя импульсов управления и оптронов, управляющих силовыми ключами инвертора постоянного напряжения в трёхфазное переменное.

Формирователь импульсов управления делит частоту поступающих на него импульсов на шесть. Излучающие диоды оптронов включены так, что ток через них течёт только в отрезки времени, когда на выходе генератора установлен высокий логический уровень напряжения, а на соответствующем выходе формирователя импульсов управления - низкий. Поэтому каждый полу-период напряжения, подаваемого на обмотку двигателя, состоит из девяти импульсов постоянной длительности, но с регулируемыми паузами между ними. При этом снижение эффективного значения напряжения, подаваемого на обмотки, происходит автоматически по нужному закону за счёт увеличения скважности при понижении его частоты.

Принципиальная схема задающего генератора частотного регулятора, использующего такой принцип, изображена на рис. 1. Он разработан для системы питания осевого вентилятора с трёхфазным двигателем мощностью 0,37 кВт. На триггере Шмитта DD3.4 и транзисторе VT1 построен генератор импульсов. Рассмотрим его работу с момента, когда конденсатор C9 разряжен и на выходе триггера DD3.4 установлен высокий логический уровень, а на выходах параллельно соединённых триггеров DD3.5 и DD3.6 - низкий.

Рис. 1. Принципиальная схема задающего генератора частотного регулятора

Конденсатор C9 начинает заряжаться через резистор R12 и сопротивление сток-исток транзистора VT1, зависящее от напряжения на его затворе. В некоторый момент времени напряжение на конденсаторе превысит верхний порог переключения триггера, уровень на выходе которого станет низким. Далее начнётся разрядка конденсатора C9. После того как напряжение на конденсаторе достигнет нижнего порога переключения триггера, всё повторится сначала.

Длительность импульса низкого уровня на выходе триггера DD3.4 и высокого уровня на выходах триггеров DD3.5 и DD3.6 неизменна и определяется постоянной времени цепи C9R13. А продолжительность пауз между импульсами зависит от напряжения на затворе полевого транзистора VT1, которое устанавливают переменным резистором R3. Чем оно выше, тем меньше сопротивление сток-исток транзистора, следовательно, короче паузы между импульсами и выше частота их следования. При максимальной частоте паузы между импульсами минимальны, поэтому напряжение, подаваемое на обмотки двигателя, близко к напряжению силовых ключей.

При понижении частоты длительность пауз увеличивается, что ведёт к уменьшению среднего значения напряжения на обмотке двигателя.

Переменным резистором R3 и регулируют частоту вращения двигателя, а подстроечным резистором R4 устанавливают её минимальное значение. Резистор R12 определяет минимальную длительность пауз между импульсами.

Такой генератор сложнее, чем в , но применён по нескольким причинам. Во-первых, он позволяет получить широкий интервал регулирования частоты при небольшом сопротивлении переменного резистора R3. У большинства переменных резисторов при переходе подвижного контакта с металлического контакта на резистивное покрытие (или наоборот) происходит резкое изменение сопротивления. Причём, чем больше номинальное сопротивление резистора, тем ярче это свойство проявляется. А в обычном генераторе для получения широкого интервала регулирования требуются именно высокоомные переменные резисторы. На практике этот эффект проявляется как резкий рывок вала двигателя и бросок потребляемого им тока при приближении движка переменного резистора к крайнему положению.

Во-вторых, стало возможным реализовать плавный запуск двигателя без существенного усложнения устройства. Это актуально для вентиляторов, особенно центробежных, поскольку момент инерции рабочего колеса у них, как правило, довольно велик, что способствует длительной работе двигателя в пусковом режиме со значительным превышением номинального потребляемого тока.

В-третьих, благодаря тому что частотой генератора управляют изменением постоянного напряжения, при необходимости легко организовать дистанционное регулирование частоты вращения вала двигателя.

Для реализации плавного пуска служат элементы C2, R1, R2, VD1, а также реле K2. В момент включения питания цепь обмотки реле K2 разорвана, излучающие диоды оптронов U1-U6 отключены от генератора импульсов, конденсатор C2 разряжен. В этом состоянии подстроечным резистором R2 устанавливают минимальную частоту следования импульсов генератора, с которой начнётся запуск двигателя. Следует отметить, что минимальная частота зависит в некоторой степени и от положения движка переменного резистора R3.

При нажатии на кнопку SB1 "Пуск" реле K2 своими контактами K2.2 подключит оптроны к генератору. Конденсатор C2 начнёт заряжаться в основном через резистор R2. Напряжение на затворе транзистора, а следовательно, и частота генератора плавно увеличиваются. Подбирая ёмкость конденсатора C2, можно изменять скорость разгона двигателя. Когда частота генератора достигнет значения, установленного переменным резистором R3, диод VD1 закроется. Конденсатор C2, заряжаясь до напряжения питания через резистор R2, на дальнейшую работу генератора не влияет.

При нажатии на кнопку SB2 "Стоп" реле K2 отключает оптроны, а контактами K2.1 разряжает конденсатор C2. Реле K1 управляет узел токовой защиты частотного регулятора. При перегрузке оно размыкает цепь питания обмотки реле K2. Для дополнительной защиты частотный регулятор подключён к сети через автоматический выключатель с током отключения 3 А.

Если плавный пуск и управление частотным регулятором с помощью кнопок не требуются, все элементы, находящиеся на схеме внутри штрих-пунктирной рамки, можно не устанавливать. Вместо участка сток-исток транзистора VT1 следует включить по схеме реостата переменный резистор сопротивлением 100 кОм. Ёмкость конденсатора C9 лучше увеличить до 470 нФ, а сопротивление резисторов R12 и R13 выбрать соответственно
200 Ом и 1,6 кОм. Аноды излучающих диодов оптронов U1-U6 следует соединить с выходами триггеров DD3.5 и DD3.6 напрямую.

С выхода триггера DD3.4 импульсы поступают на вход счётчика DD4, коэффициент деления которого установлен равным трём. Формирователь импульсов управления построен на счётчике DD1, элементах 3ИЛИ-НЕ микросхемы DD2 и триггерах Шмитта DD3.1-DD3.3. Его работа достаточно подробно описана в и .

Работу узла управления поясняют временные диаграммы сигналов в некоторых его точках, показанные на рис. 2. В качестве выходных сигналов фазы А показаны токи, протекающие через излучающие диоды оптронов U1 и U4. Поскольку, в отличие от , в рассматриваемом устройстве все процессы синхронизированы с частотой генератора, так называемое мёртвое время At между открытыми состояниями разных силовых ключей, равное по длительности паузе между импульсами генератора, обеспечивается автоматически. При указанных на схеме номиналах резистора R12 и конденсатора C9 и максимальной частоте импульсов её длительность - не менее 30 мкс.

Рис. 2. Временные диаграммы сигналов

Полевой транзистор КП501А можно заменить на BSN304 или серии КП505. Вместо микросхемы 74НСТ14 лучше установить один из её функциональных аналогов КР1554ТЛ2, 74АС14, отличающихся повышенной нагрузочной способностью. Применять здесь микросхемы серии К561, а тем более К176 не следует.

Литература

1. Нарыжный В. Источник питания трёхфазного электродвигателя от однофазной сети с регулировкой частоты вращения. - Радио, 2003, № 12, с. 35-37.

2. Галичанин А. Система частотного управления асинхронным двигателем. - Радио, 2016, № 6, с. 35-41.

3. Хиценко В. Три фазы из одной. - Радио, 2015, № 9, с. 42, 43.


Дата публикации: 17.05.2017

Мнения читателей
  • петр / 10.09.2018 - 17:16
    Номера выводов кр1561ле10 не соответствуют справочнику
  • Александр / 24.05.2017 - 19:40
    В качестве выходных сигналов фазы А показаны токи, протекающие через излучающие диоды оптронов U1 и U4 Через U1 и U2 Зачем инвертировать сигнал для драйверов -(А, В, С)

Для питания различных приборов хозяйственного и промышленного назначения требуется трехфазная сеть переменного тока с частотой 200 или 400 гц. Для получения такого напряжения, в большинстве случаев используют соответствующий электромеханический трехфазный генератор, ротор которого приводится в движение при помощи однофазного электродвигателя, питаемого от сети 220В.

Предлагаемый электронный генератор позволяет решить эту проблему с лучшим коэффициентом полезного действия.

Если изучить диаграмму трехфазного напряжения можно увидеть три синусоидальных сигнала, сдвинутых последовательно на 1/3 периода. Если предполагается частота 200 Гц, то период составляет 5 mS. Следовательно 1/3 периода равна 1,666... mS. Таким образом получается, что если у нас будет исходное однофазное напряжение 200 Гц, пропустив его через две последовательно включенные линии задержки, каждая из которых вносит задержку по 1,666.. mS мы получим трехфазное напряжение, одна фаза -напряжение исходное, и две фазы напряжения с выходов соответствующих линий задержки.

Принципиальная схема устройства, работающего на таком принципе показана на рисунке. Все исходные сигналы прямоугольные, их преобразование в синусоидальные происходит в индуктивностях выходных трансформаторов Т1-Т3.

Мультивибратор на микросхеме D1 вырабатывает прямоугольные импульсы частотой 200 Гц. Эти импульсы поступают на вход электронного высоковольтного ключа на транзисторах VT1 и VT4, на выходе которого включена первичная обмотка трансформатора Т1. В результате на обмотку поступает импульсное напряжение 300В. ЭДС самоиндукции сглаживает эти импульсы до формы, близкой к синусоидальной и на вторичной обмотке Т1 формируется переменное напряжение частотой 200 гц. Таким образом формируется фаза "А".

Для формирования фазы "В" импульсы частотой 200 Гц с выхода D1 поступают на схему задержки, имеющую постоянную времени равную 1,666 mS. С выхода D1.2 импульсное напряжение, сдвинутое на 1/3 фазы по сравнению с напряжением на выходе D1.3, поступает на второй ключ на транзисторах VT2 и VT5, работающий аналогично предыдущему. На вторичной обмотке Т1 имеется фаза "В".

Затем, с выхода элемента D2.2 импульсное напряжение, уже сдвинутое на 1/3 фазы, поступает на вторую линию задержки на элементах D2.3 и D2.4, в которой происходит еще один сдвиг на 1/3 фазы. Импульсы с выхода элемента D2.4 поступают на третий ключ на транзисторах VT3 и VT6, в коллекторной цепи которого включена первичная обмотка трансформатора Т3, а на на его вторичной обмотке выделяется переменное напряжение третей фазы.

Микросхемы: D1 - К561ЛЕ5, D2 -К561ЛП2. Микросхемы могут быть из серии К176, но в этом случае напряжение питания нужно понизить до 9В (вместо 12В). Транзисторы КТ604 можно заменить на КТ940, транзисторы КТ848 - на КТ841. Трансформаторы Т1-Т3 одинаковые трансформаторы, рассчитанные на получение нужного напряжения при подаче на их первичную обмотку напряжения 220В. Например, если требуется получить трехфазное напряжение 36В нужно взять трансформаторы 220В/36В на нужную мощность. Для питания микросхем используется

источник постоянного стабилизированного напряжения 12В. Напряжение +300В получается выпрямлением сетевого напряжения 220В при помощи диодного моста, например на диодах Д242 или других мощных диодах на напряжение не менее 300В. Сглаживание пульсаций производится конденсатором на 100мкф/360V (как в источнике питания телевизора УСЦТ). Это постоянное напряжение подается на точку "+300V. Можно подавать и меньшее напряжение, при этом соответственно будут изменяться и выходные напряжения.

В процессе настройки нужно, подбором сопротивления R1, установить при помощи частотомера частоту на выводе 10 D1 равную 200 гц, а затем подбором R2 и R3, при помощи фазометра установить сдвиг фаз по 120°.

Если требуется трехфазное напряжение частотой 400 Гц величины элементов меняются на такие: R1 = 178 ком, R2 = 60 ком, R3 = 60ком. Все детали, кроме выходных транзисторов и трансформаторов монтируются на одной печатной плате из одностороннего стеклотекстолита. Выходные транзисторы должны быть установлены на теплоотводящие радиаторы с площадью поверхности не менее 100 см2.

Вид печатной платы источника трехфазного напряжения

Генератор, схема которого приведена на рис.1, может найти применение в различных преобразователях однофазного напряжения в трехфазное. Он проще описанных в .

Рис. 1 Схема трехфазного генератора импульсов

Устройство состоит из генератора тактовых импульсов DD1.1 ...DD1.3, формирователя DD2 и инверторов DD1.4...DD1.6. Частоту тактового генератора выбирают в 6 раз выше частоты необходимого трехфазного напряжения и рассчитывают по приближенной формуле

Формирователь выполнен на сдвиговом регистре, включенном по схеме счетчика-делителя частоты на 6. На выходах 1, 3 и 5 (выводы 5, 6, 13)

Рис. 2 Выходные сигналы трехфазного генератора импульсов

DD2 образуются прямоугольные импульсы, сдвинутые на 1/3 периода со скважностью 2. К выходам DD2 для развязки подключают инверторы DD1.4...DD1.6. Выходные сигналы генератора показаны на рис.2.

А.РОМАНЧУК

Литература

1. Шило B.Л Популярные цифровые микросхемы. - Радио и связь,1989, С.60.

2. Ильин А. Подключение трех-фазных пoтpeбитeлeй к однофазной цепи. - Радиолюбитель, 1998, N10, С.26.

3. Кроер Ю. Трехфазное 200 Гц из 50 Гц. - Радиолюбитель, 1999, N10, С.21.

4. Пышкин В. Трехфазный инвертор. - Радио, 2000, N2, С.35.

Одна из первых схем преобразователя для питания трехфазного двигателя была опубликована в журнале «Радио» №11 1999г. Разработчик схемы М. Мухин в то время был учеником 10 класса и занимался в радиокружке.

Преобразователь предназначался для питания миниатюрного трехфазного двигателя ДИД-5ТА, который использовался в станке для сверления печатных плат. При этом следует отметить, что рабочая частота этого двигателя 400Гц, а напряжение питания 27В. Кроме того, средняя точка двигателя (при соединении обмоток «звездой») выведена наружу, что позволило предельно упростить схему: понадобилось всего три выходных сигнала, а на каждую фазу потребовался всего один выходной ключ. Схема генератора показана на рисунке 1.

Как видно из схемы преобразователь состоит из трех частей: генератора-формирователя импульсов трехфазной последовательности на микросхемах DD1…DD3, трех ключей на составных транзисторах (VT1…VT6) и собственно электродвигателя M1.

На рисунке 2 показаны временные диаграммы импульсов, сформированных генератором-формирователем. Задающий генератор выполнен на микросхеме DD1. С помощью резистора R2 можно установить требуемую частоту вращения двигателя, а также изменять ее в некоторых пределах. Более подробную информацию о схеме можно узнать в указанном выше журнале. Следует отметить, что по современной терминологии подобные генераторы-формирователи называются контроллерами.

Рисунок 1.

Рисунок 2. Временные диаграммы импульсов генератора.

На базе рассмотренного контроллера А. Дубровским из г. Новополоцка Витебской обл. была разработана конструкция частотно-регулируемого привода для двигателя с питанием от сети переменного тока напряжением 220В. Схема устройства была опубликована в журнале «Радио» 2001г. №4.

В этой схеме, практически без изменений, используется только что рассмотренный контроллер по схеме М. Мухина. Выходные сигналы с элементов DD3.2, DD3.3 и DD3.4 используются для управления выходными ключами A1, A2, и A3, к которым подключается электродвигатель. На схеме полностью показан ключ A1, остальные идентичны. Полностью схема устройства показана на рисунке 3.

Рисунок 3.

Для ознакомления с подключением двигателя к выходным ключам стоит рассмотреть упрощенную схему, приведенную на рисунке 4.

Рисунок 4.

На рисунке показан электродвигатель M, управляемый ключами V1…V6. Полупроводниковые элементы для упрощения схемы показаны в виде механических контактов. Питание электродвигателя осуществляется постоянным напряжением Ud получаемым от выпрямителя (на рисунке не показан). При этом, ключи V1, V3, V5 называются верхними, а ключи V2, V4, V6 нижними.

Совершенно очевидно, что открытие одновременно верхних и нижних ключей, а именно парами V1&V6, V3&V6, V5&V2 совершенно недопустимо: произойдет короткое замыкание. Поэтому, для нормальной работы такой ключевой схемы, обязательно, чтобы к моменту открытия нижнего ключа верхний ключ уже был закрыт. С этой целью контроллеры управления формируют паузу, часто называемую «мертвой зоной».

Величина этой паузы такова, чтобы обеспечить гарантированное закрытие силовых транзисторов. Если эта пауза будет недостаточна, то возможно кратковременное открытие верхнего и нижнего ключа одновременно. Это вызывает нагрев выходных транзисторов, часто приводящий к выходу их из строя. Такую ситуацию называют сквозными токами.

Вернемся к схеме, показанной на рисунке 3. В данном случае верхними ключами являются транзисторы 1VT3, а нижними 1VT6. Нетрудно заметить, что нижние ключи гальванически связаны с управляющим устройством и межу собой. Поэтому управляющий сигнал с выхода 3 элемента DD3.2 через резисторы 1R1 и 1R3 подаются непосредственно на базу составного транзистора 1VT4…1VT5. Этот составной транзистор есть не что иное, как драйвер нижнего ключа. В точности также от элементов DD3, DD4 управляются составные транзисторы драйверов нижнего ключа каналов A2 и A3. Питание всех трех каналов осуществляется от одного и того же выпрямителя VD2.

Верхние же ключи гальванической связи с общим проводом и управляющим устройством не имеют, поэтому для управления ими кроме драйвера на составном транзисторе 1VT1…1VT2 пришлось в каждый канал установить дополнительный оптрон 1U1. Выходной транзистор оптрона в этой схеме также выполняет функцию дополнительного инвертора: когда на выходе 3 элемента DD3.2 высокий уровень открыт транзистор верхнего ключа 1VT3.

Для питания каждого драйвера верхнего ключа используется отдельный выпрямитель 1VD1, 1C1. Каждый выпрямитель питается от индивидуальной обмотки трансформатора, что можно рассматривать как недостаток схемы.

Конденсатор 1C2 обеспечивает задержку переключения ключей около 100 микросекунд, столько же дает оптрон 1U1, тем самым формируется вышеупомянутая «мертвая зона».

Достаточно ли только регулирования частоты?

С понижением частоты питающего переменного напряжения падает индуктивное сопротивление обмоток двигателя (достаточно вспомнить формулу индуктивного сопротивления), что приводит к увеличению тока через обмотки, и, как следствие, к перегреву обмоток. Также происходит насыщение магнитопровода статора. Чтобы избежать этих негативных последствий, при уменьшении частоты приходится снижать и эффективное значение напряжения на обмотках двигателя.

Одним из способов решения проблемы в любительских частотниках предлагалось это самое эффективное значение регулировать при помощи ЛАТРа, подвижный контакт которого имел механическую связь с переменным резистором регулятора частоты. Такой способ был рекомендован в статье С. Калугина «Доработка регулятора частоты вращения трехфазных асинхронных двигателей». Журнал «Радио» 2002, №3, стр.31.

В любительских условиях механический узел получался в изготовлении сложным, а главное ненадежным. Более простой и надежный способ использования автотрансформатора был предложен Э. Мурадханяном из Еревана в журнале «Радио» №12 2004. Схема этого устройства показана на рисунках 5 и 6.

Напряжение сети 220В подается на автотрансформатор T1, а с его подвижного контакта на выпрямительный мост VD1 с фильтром C1, L1, C2. На выходе фильтра получается изменяемое постоянное напряжение Uрег, используемое собственно для питания двигателя.

Рисунок 5.

Напряжение Uрег через резистор R1 также подается на задающий генератор DA1, выполненный на микросхеме КР1006ВИ1 (импортный вариант ). В результате такого подключения обычный генератор прямоугольных импульсов превращается в ГУН (генератор, управляемый напряжением). Поэтому, при увеличении напряжения Uрег увеличивается и частота генератора DA1, что приводит к увеличению частоты вращения двигателя. При снижении напряжения Uрег пропорционально уменьшается и частота задающего генератора, что позволяет избежать перегрев обмоток и перенасыщение магнитопровода статора.

Рисунок 6.

Рисунок 7.

Генератор выполнен на втором триггере микросхемы DD3, на схеме обозначен как DD3.2. Частота задается конденсатором C1, регулировка частоты осуществляется переменным резистором R2. Вместе с регулировкой частоты изменяется и длительность импульса на выходе генератора: при понижении частоты длительность уменьшается, поэтому напряжение на обмотках двигателя падает. Такой принцип управления называется широтно импульсной модуляцией (ШИМ).

В рассматриваемой любительской схеме мощность двигателя невелика, питание двигателя производится прямоугольными импульсами, поэтому ШИМ достаточно примитивна. В реальных большой мощности ШИМ предназначена для формирования на выходе напряжений практически синусоидальной формы, как показано на рисунке 8, и для реализации работы с различными нагрузками: при постоянном моменте, при постоянной мощности и при вентиляторной нагрузке.

Рисунок 8. Форма выходного напряжения одной фазы трехфазного инвертора с ШИМ.

Силовая часть схемы

Современные фирменные частотники имеют на выходе , специально предназначенные для работы в преобразователях частоты. В ряде случаев эти транзисторы объединены в модули, что в целом улучшает показатели всей конструкции. Управление этими транзисторами производится с помощью специализированных микросхем-драйверов. В некоторых моделях драйверы выпускаются встроенными в транзисторные модули.

Наиболее распространены в настоящее время микросхемы и транзисторы фирмы International Rectifier. В описываемой схеме вполне возможно применить драйверы IR2130 или IR2132. В одном корпусе такой микросхемы содержится сразу шесть драйверов: три для нижнего ключа и три для верхнего, что позволяет легко собрать трехфазный мостовой выходной каскад. Кроме основной функции эти драйверы содержат также несколько дополнительных, например защита от перегрузок и коротких замыканий. Более подробную информацию об этих драйверах можно узнать из технических описаний Data Sheet на соответствующие микросхемы.

При всех достоинствах единственный недостаток этих микросхем их высокая цена, поэтому автор конструкции пошел другим, более простым, дешевым, и в то же время работоспособным путем: специализированные микросхемы-драйверы заменены микросхемами интегрального таймера КР1006ВИ1 (NE555).

Выходные ключи на интегральных таймерах

Если вернуться к рисунку 6, то можно заметить, что схема имеет для каждой из трех фаз выходные сигналы, обозначенные как «Н» и «В». Наличие этих сигналов позволяет раздельно управлять верхними и нижними ключами. Такое разделение позволяет формировать паузу между переключением верхних и нижних ключей при помощи блока управления, а не самими ключами, как было показано в схеме на рисунке 3.

Схема выходных ключей с применением микросхем КР1006ВИ1 (NE555) показана на рисунке 9. Естественно, что для трехфазного преобразователя понадобится три экземпляра таких ключей.

Рисунок 9.

В качестве драйверов верхних (VT1) и нижних (VT2) ключей используются микросхемы КР1006ВИ1, включенные по схеме триггеров Шмидта. С их помощью возможно получить импульсный ток затвора не менее 200мА, что позволяет получить достаточно надежное и быстрое управление выходными транзисторами.

Микросхемы нижних ключей DA2 имеют гальваническую связь с источником питания +12В и, соответственно, с блоком управления, поэтому их питание осуществляется от этого источника. Микросхемы верхних ключей можно запитать так же, как было показано на рисунке 3 с использованием дополнительных выпрямителей и отдельных обмоток на трансформаторе. Но в данной схеме применяется иной, так называемый, «бустрепный» метод питания, смысл которого в следующем. Микросхема DA1 получает питание от электролитического конденсатора C1, заряд которого происходит по цепи: +12В, VD1, C1, открытый транзистор VT2 (через электроды сток - исток), «общий».

Другими словами заряд конденсатора C1 происходит в то время, когда открыт транзистор нижнего ключа. В этот момент минусовой вывод конденсатора С1 оказывается практически накоротко соединен с общим проводом (сопротивление открытого участка «сток - исток» у мощных полевых транзисторов составляет тысячные доли Ома!), что и обеспечивает возможность его заряда.

При закрытом транзисторе VT2 также закроется и диод VD1, заряд конденсатора C1 прекратится до следующего открытия транзистора VT2. Но заряд конденсатора C1 достаточен для питания микросхемы DA1 на время, пока закрыт транзистор VT2. Естественно, что в этот момент транзистор верхнего ключа находится в закрытом состоянии. Данная схема силовых ключей оказалась настолько хороша, что без изменений применяется и в других любительских конструкциях.

В данной статье рассмотрены лишь самые простые схемы любительских трехфазных инверторов на микросхемах малой и средней степени интеграции, с которых все начиналось, и где можно даже по схеме рассмотреть все «изнутри». Более современные конструкции выполнены , схемы которых также неоднократно публиковались в журналах «Радио».

Микроконтроллерные блоки управления по схеме более просты, чем на микросхемах средней степени интеграции, имеют такие нужные функции, как , защита от перегрузок и коротких замыканий и некоторые другие. В этих блоках все реализовано за счет управляющих программ или как их принято называть «прошивок». Именно от этих программ и зависит насколько хорошо или плохо будет работать блок управления трехфазного инвертора.

Достаточно простые схемы контроллеров трехфазного инвертора опубликованы в журнале «Радио» 2008 №12. Статья называется «Задающий генератор для трехфазного инвертора». Автор статьи А. Долгий является также автором цикла статей о микроконтроллерах и многих других конструкций. В статье приведены две простых схемы на микроконтроллерах PIC12F629 и PIC16F628.

Частота вращения в обеих схемах изменяется ступенчато с помощью однополюсных переключателей, что вполне достаточно во многих практических случаях. Там же дается ссылка где можно скачать готовые «прошивки», и, более того, специальную программу, с помощью которой можно изменять параметры «прошивок» по своему усмотрению. Возможна также работа генераторов режиме «демо». В этом режиме частота генератора уменьшена в 32 раза, что позволяет визуально с помощью светодиодов наблюдать работу генераторов. Также даются рекомендации по подключению силовой части.

Но, если не хочется заниматься программированием микроконтроллера фирма Motorola выпустила специализированный интеллектуальный контроллер MC3PHAC, предназначенный для систем управления 3-фазным двигателем. На его базе возможно создание недорогих систем регулируемого трехфазного привода, содержащего все необходимые функции для управления и защиты. Подобные микроконтроллеры находят все более широкое применение в различной бытовой технике, например, в посудомоечных машинах или холодильниках.

В комплекте с контроллером MC3PHAC возможно использование готовых силовых модулей, например IRAMS10UP60A разработанных фирмой International Rectifier. Модули содержат шесть силовых ключей и схему управления. Более подробно с этими элементами можно в их документации Data Sheet, которую достаточно просто найти в интернете.