Митохондриальные болезни. Митохондриальная патология у детей

Митохондриальные болезни. Митохондриальная патология у детей
Митохондриальные болезни. Митохондриальная патология у детей


Описание:

Митохондриальные заболевания - группа наследственных заболеваний, связанных с дефектами в функционировании митохондрий, приводящими к нарушениям энергетических функций в клетках эукариот, в частности, человека.
Митохондриальные заболевания обусловлены генетическими, структурными, биохимическими дефектами митохондрий, приводящими к нарушениям тканевого дыхания. Они передаются только по женской линии к детям обоих полов, так как сперматозоиды передают зиготе половину ядерного генома, а яйцеклетка поставляет и вторую половину генома, и митохондрии. Патологические нарушения клеточного энергетического обмена могут проявляться в виде дефектов различных звеньев в цикле Кребса, в дыхательной цепи, процессах бета-окисления и т. д.

Не все ферменты и другие регуляторы, необходимые для эффективного функционирования митохондрий, кодируются митохондриальной ДНК. Большая часть митохондриальных функций контролируется ядерной.

Можно выделить две группы митохондриальных заболеваний:

Ярко выраженные наследственные синдромы, обусловленные мутациями генов, ответственных за митохондриальные белки (синдром Барта, синдром Кернса-Сейра, синдром Пирсона, синдром MELAS, синдром MERRF и другие).

Вторичные митохондриальные заболевания, включающие нарушение клеточного энергообмена как важное звено формирования патогенеза (болезни соединительной ткани, гликогеноз, печёночная недостаточность, панцитопения, а также , диабет, и другие).


Причины митохондриальных заболеваний:

Повреждение митохондрий в основном возникает   из-за воздействия реактивных форм кислорода (РФК). В настоящее время считают, что большинство РФК образуется комплексами I и III, вероятно, вследствие высвобождения электронов под воздействием НАД-Н и ФАД-Н в ЦПЭ. Митохондрии используют приблизительно 85% кислорода, потребляемого клеткой, в процессе образования АТФ.   В ходе нормального процесса   ОФ от 0.4% до 4.0% всего употребляемого кислорода преобразуется в митохондриях в супероксидные радикалы (О2-). Супероксид трансформируется до пероксида водорода (Н2О2) с помощью ферментов детоксикации-   марганцевой супероксиддисмутазы (Mn-СОД) или цинк/медь- супероксиддисмутазы (Cu/Zn СОД),- а затем до воды с помощью глутатионпероксидазы (ГП) или пероксидредоксина III (ПР III). Однако, если эти ферменты не способны достаточно быстро   конвертировать РФК, такие как супероксид-радикал, до воды, происходит оксидативное повреждение и аккумулируется в митохондриях.   Глутатион в ПР является одним из основных антиоксидантов в организме. Глутатион представляет собой трипептид, содержащий глутамин, глицин и цистеин. ГП требует селен в качестве кофактора.

Показано, сто супероксид in vitro повреждает железо-серный кластер, находящийся в в активном центре аконитазы, фертента цикла ТКК. Из-за этого железо вступает в реакцию с Н2О2 с образованием гидроксильных радикалов через реакцию Фентона (Fenton). Кроме того, оксид азота (NO) образуется в митохондриях с помощью митохондриальной синтазы оксида азота (МтСОА), а также свободно диффундирует в митохондрии из цитозоля. NO реагирует с O2 с образованием другого радикала- пероксинитрита (ONOO-). Вместе эти два радикала и другие радикалы могут нанести существенное повреждение митохондриям и другим компонентам клетки.

В митохондриях элементами, которые особенно подвержены воздействию свободных радикалов, являются липиды, белки, окислительно-восстановительные ферменты и мтДНК. Прямое повреждение митохондриальных белков снижает их аффинность к субстратам или коферментам и таким образом нарушают их функцию. Проблема осложняется тем, что если повреждение митохондрии произошло, то функция митохондрии может быть скомпрометирована увеличением потребностей клетки для процессов репарации энергии. Митохондриальная дисфункция может привести к цепному процессу, при котором митохондриальное повреждение влечет за собой дополнительное повреждение.

Комплекс I особенно чувствителен к воздействию оксида азота (NO). У животных, которым вводили природные и синтетические антагонисты комплекса I, как правило, наблюдается гибель нейронов. Нарушение функции комплекса I было ассоциировано с наследственной оптической нейропатией Лебера, болезнью Паркинсона и другими нейродегенеративными состояниями.
индуцирует образование супероксида в митохондриях эндотелиальными клетками, который является важным медиатором диабетических осложнений, таких как сердечно- сосудистые заболевания. Образование супероксида в эндотелии также способствует развитию , гипертензии, старения, ишемически- реперфузионных повреждений и .

Медиаторы воспаления, такие как фактор опухолей α (ФНОα) in vitro были связаны с митохондриальной дисфункцией   и повышали образование ФРК. В модели застойной сердечной недостаточности   добавление ФНОα к культуре кардиомиоцитов повышало образование РФК и гипертрофию миоцитов. ФНОα вызывает митохондриальную дисфункцию   путем восстановления активности комплекса III в ЦПЭ, увеличивая образование РФК и повреждение мтДНК.

Дефицит питательных веществ или их избыток также может привести к митохондриальной дисфункции. Витамины, минералы и другие метаболиты работают как необходимые кофакторы для синтеза и функционирования митохондриальных ферментов и других составляющих, которые поддерживают функцию митохондрий, и диета с недостатком микрокомпонентов может   ускорять старение митохондрий и способствовать нейродегенерации. Например, ферменты участвующие в цепи синтеза гемма, требуют достаточных количеств пиридоксина, железа, меди, цинка и рибофлавина. Недостаток питательных веществ, необходимых для каких- либо компонентов цикла ТКК или ЦПЭ, может привести к увеличению образования свободных радикалов и повреждению мтДНК.

Хорошо известно, что недостаток питательных веществ является широко распространенной причиной патогенеза многих заболеваний и является главным предметом спора в здравоохранении.   Недостаток железа главным посредником в развитии общего груза заболеваний, затрагивающих приблизительно 2 миллиарда людей, преимущественно женщин и детей. Это наиболее распространенный тип дефицита питательных веществ. Низкий статус содержания железа снижает активность митохондрий   путем выключения комплекса IV и увеличения   оксидативного стресса. Механизмы, лежащие в основе процесса влияния дефицита питательных веществ (и в некоторых случаях избыток, как при перегрузке железом) на возникновение, развитие и прогрессирование заболеваний, возникающих вследствие нарушения митохондриальных функций, к настоящему времени уже изучены.


Наследование митохондриальных болезней:

Митохондрии наследуются иначе, чем ядерные гены. Ядерные гены в каждой соматической клетке обычно представлены двумя аллелями (за исключением большинства сцепленных с полом генов у гетерогаметного пола). Один аллель унаследован от отца, другой от матери. Однако митохондрии содержат собственную ДНК, причем в каждой митохондрии человека обычно содержится от 5 до 10 копий кольцевой молекулы ДНК (см. Гетероплазмия), и все митохондрии наследуются от матери. Когда митохондрия делится, копии ДНК случайным образом распределяются между ее потомками. Если только одна из исходных молекул ДНК содержит мутацию, в результате случайного распределения такие мутантные молекулы могут накопиться в некоторых митохондриях. Митохондриальная болезнь начинает проявляться в тот момент, когда заметное число митохондрий во многих клетках данной ткани приобретают мутантные копии ДНК (пороговая экспрессия).

Мутации в митохондриальной ДНК происходят, по разным причинам, намного чаще, чем в ядерной. Это означает, что митохондриальные болезни достаточно часто проявляются из-за спонтанных вновь возникающих мутаций. Иногда темп мутирования увеличивается из-за мутаций в ядерных генах, кодирующих ферменты, которые контролируют репликацию ДНК митохондрий.


Симптомы митохондриальных заболеваний:

Эффекты митохондриальных заболеваний очень разнообразны. Из-за различного распределения дефектных митохондрий в разных органах мутация у одного человека может привести к заболеванию печени, а у другого - к заболеванию мозга. Величина проявления дефекта может быть большой или малой, и она может существенно изменяться, медленно нарастая во времени. Некоторые небольшие дефекты приводят лишь к неспособности пациента выдерживать физическую нагрузку, соответствующую его возрасту, и не сопровождаются серьёзными болезненными проявлениями. Другие дефекты могут быть более опасны, приводя к серьёзной патологии.

В общем случае митохондриальные заболевания проявляются сильнее при локализации дефектных митохондрий в мышцах, мозге, нервной ткани, поскольку эти органы требуют больше всего энергии для выполнения соответствующих функций.

Несмотря на то, что протекание митохондриальных заболеваний сильно отличаются у разных пациентов, на основании общих симптомов и конкретных мутаций, вызывающих болезнь, выделено несколько основных классов этих заболеваний.

Помимо относительно распространённой митохондриальной , встречаются:

7. Митохондриальная нейрогастроинтенстинальная : гастроинтестинальная псевдообструкция и кахексией, нейропатия, энцефалопатия с изменениями белого вещества головного мозга.


Лечение митохондриальных заболеваний:

Для лечения назначают:


В настоящее время лечение митохондриальных заболеваний находится в стадии разработки, но распространённым терапевтическим методом служит симптоматическая профилактика с помощью витаминов. В частности, в лечении синдрома MELAS у ряда пациентов оказались эффективными кофермент Q, который применяется как цитопротектор и антиоксидант при кардиомиопатиях и , рибофлавин и никотинамид. Также в качестве одного из методов применяются пируваты.

В настоящее время проводятся экспериментальные работы по изучению возможности экстракорпорального (in vitro) оплодотворения с использованием химерной яйцеклетки, ядро которой получено из яйцеклетки пациентки с митохондриальным заболеванием, а цитоплазму из другой яйцеклетки от женщины с нормально функционирующими митохондриями (замена ядра).


Явление гетероплазмии определяет существование в одной клетке нормальных митохондрий и митохондрий с нарушенной функцией. За счет первых клетка может функционировать какое-то время. Если продукция энергии в ней падает ниже определенного порога, то происходит компенсаторная пролиферация всех митохондрий, включая дефектные. В худшем положении оказываются клетки, которые потребляют много энергии: нейроны, мышечные волокна, кардиомиоциты.

Из-за утечки в дыхательной цепи митохондрии постоянно продуцируют свободные радикалы на уровне 1–2 % поглощенного кислорода. Количество продукции радикалов зависит от мембранного потенциала митохондрий, на изменения которого влияет состояние АТФ-зависимых калиевых каналов митохондрий. Открытие этих каналов влечет за собой возрастание образования свободных радикалов, повреждение других белков митохондриальных мембран и мтДНК. ДНК митохондрий не защищена гистонами и хорошо доступна для радикалов, что проявляется в изменении уровня гетероплазмии. Принято считать, что наличие 10 % митохондрий с измененной ДНК не оказывает влияния на фенотип.

4. КЛАССИФИКАЦИЯ И ОБЩАЯ ХАРАКТЕРИСТИКА

МИТОХОНДРИАЛЬНЫХ ЗАБОЛЕВАНИЙ

Единой этиологической классификации МЗ в настоящее время не существует из-за неопределенности вклада мутаций ядерного генома в их этиологию и патогенез. Существующие классификации основаны на 2-х принципах : локализации мутантного гена в мтДНК или яДНК и участии мутантного белка в реакциях окислительного фосфорилирования.

Этиологическая классификация (по, 2006) включает митохондриальные болезни, связанные с дефектами:


· мтДНК;

· яДНК;

· интергеномных взаимодействий.

Патогенетическая классификация (по, 2000) подразделяет митохондриальные болезни на обусловленные нарушением:

· карнитинового цикла;

· окисления жирных кислот;

· метаболизма пирувата;

· цикла Кребса;

· работы дыхательной цепи;

· сопряжения окисления и фосфорилирования.

В клинической практике объединяют комбинации часто встречающихся симптомов МЗ в синдромы.

Митохондриальные заболевания - гетерогенная группа заболеваний, характеризующихся генетическими и структурно-биохимическими дефектами митохондрий, нарушением тканевого дыхания. По происхождению МЗ делятся на первичные (наследственные) и вторичные.

Причинами наследственных МЗ являются мутации митохондриального и (или) ядерного генома.

К настоящему времени известно более 200 заболеваний, вызванных мутацией мтДНК.

По мере накопления клинико-диагностических данных в разных странах было установлено, что у детей примерно каждое третье наследственное метаболическое заболевание связано с митохондриями. По данным Н. Г. Даниленко, (2007) в популяциях частота митохондриальных болезней варьирует от 1:5000 до 1:35000. Минимальная частота МЗ в популяции взрослых жителей Великобритании оценивается как (1–3):10000.

Характеристика клинических особенностей МЗ представлена в таблице 2.

Таблица 2 - Клинические особенности митохондриальных заболеваний (по, 2007)

Клинические особенности

Патофизиологическое значение

Полисистемность, полиорганность, «необъяснимость» сочетания симптомов со стороны органов, не связанных по происхождению

Поражение органов, имеющих близкий «порог» чувствительности к нарушению окислительного фосфорилирования

Наличие острых эпизодов в дебюте заболевания или в его развернутой стадии

«Метаболический криз», связанный со срывом баланса между потребностями ткани в энергообеспечении и уровнем анаэробного дыхания

Вариабельный возраст начала симптоматики (от 1 до 7-го десятилетия жизни)

Вариабельный уровень мутантной мтДНК в разных тканях в различный момент времени

Усугубление симптоматики с возрастом

Нарастание числа мутаций мтДНК и ослабление интенсивности окислительного фосфорилирования по мере старения

Поражение большинства систем и органов при МЗ можно объяснить тем, что многие процессы, протекающие в организме энергозависимы. Относительная энергозависимость органов и тканей в порядке убывания: ЦНС, скелетные мышцы, миокарда, орган зрения, почки, печень, костный мозг, эндокринная система.

Нейронам необходимо большое количество АТФ для синтеза нейромедиаторов, регенерации, поддержания необходимого градиента Na + и К+, проведения нервного импульса. Скелетные мышцы в покое потребляют незначительные количества АТФ, но при физической нагрузке эти потребности возрастают в десятки раз. В миокарде постоянно совершается механическая работа, необходимая для циркуляции крови. Почки используют АТФ в процессе реабсорбции веществ при образовании мочи. В печени происходит синтез гликогена, жиров, белков и других соединений.

5. ДИАГНОСТИКА МИТОХОНДРИАЛЬНЫХ ЗАБОЛЕВАНИЙ

Митохондриальные болезни трудны для диагностики. Определяется это отсутствием строгой связи между сайтом мутации и клиническим фенотипом. Это значит, что одна и та же мутация может вызывать разные симптомы, а один и тот же клинический фенотип могут формировать разные мутации.

Поэтому для постановки диагноза митохондриального заболевания важен комплексный подход, основанный на генеалогическом, клиническом, биохимическом , морфологическом (гистологическом), генетическом анализах.

Генеалогический анализ

Наличие в семейном анамнезе синдрома внезапной младенческой смерти, кардиомиопатий, деменций, раннего инсульта, ретинопатий, диабета, задержки развития может указывать на митохондриальную природу имеющегося заболевания.

Клинические проявления митохондриальных заболеваний

Миопатический синдром : слабость и атрофия мышц, снижение миотонического тонуса, мышечные боли, непереносимость физической нагрузки (усиление мышечной слабости, появление рвоты и головной боли).


Центральная нервная система и органы чувств: летаргия, кома, задержка психомоторного развития, деменция, нарушение сознания, атаксия, дистония, эпилепсия, миоклонические судороги, «метаболический инсульт», слепота центрального происхождения, пигментный ретинит, атрофия зрительных нервов, нистагм, катаракта, офтальмоплегия, птоз, нарушение остроты зрения, гипоакузия, дизартрия, сенсорные нарушения, сухость слизистой рта, гипотония, снижение глубоких сухожильных рефлексов, инсультоподобные эпизоды, гемианопсия.

Периферическая нервная система: аксональная нейропатия, нарушение двигательной функции гастроинтестинального тракта.

Сердечно-сосудистая система: кардиомиопатия (обычно гипертрофическая), аритмия, нарушение проводимости.

Желудочно-кишечный тракт: частые диспептические явления (рвота, диарея), атрофия ворсинок кишечника, экзокринная недостаточность поджелудочной железы.

Печень: прогрессирующая печеночная недостаточность (особенно у младенцев), гепатомегалия.

Почки: тубулопатия (по типу синдрома Де Тони-Дебре-Фанкони: фосфатурия, глюкозурия, аминацидурия), нефрит, почечная недостаточность.

Эндокринная система: задержка роста, нарушение полового развития, гипогликемия, сахарный и несахарный диабет, гипотиреоз, гипопаратиреоидизм, гипоталамо-гипофизарная недостаточность, гиперальдостеронизм.

Система кроветворения: панцитопения, макроцитарная анемия .

Основные биохимические проявления митохондриальных заболеваний

Повышение уровня:

· лактата и пирувата в крови (ликворе);

· 3-гидроксимасляной и ацетоуксусной кислот в крови;

· аммиака в крови;

· аминокислот;

· жирных кислот с разной длиной цепи;

· миоглобина;

· продуктов перекисного окисления липидов;

· мочевой экскреции органических кислот.

Снижение:

· активности некоторых ферментов энергетического обмена в митохондриях;

· содержания общего карнитина в крови.

Лактатный ацидоз является практически постоянным спутником митохондриальных болезней, но проявляется и при других формах патологии. Поэтому более эффективным является измерение уровня лактата в венозной крови после умеренной физической нагрузки на велоэргометре.

Основные изменения структуры скелетной мышцы при митохондриальной недостаточности

Морфологическое исследование позволяет с помощью световой и электронной микроскопии в сочетании с гистохимическими методами выявить нарушения количества и строения митохондрий, признаки их дисфункций и снижения активности митохондриальных ферментов.

C ветовая микроскопия с применением различных видов специальной окраски, в т. ч. и для определения активности митохондриальных ферментов выявляет:

· феномен «рваных» (шероховатых) красных волокон (RRF - « ragged » red fibres ) в количестве более 5 % (при окраске по Гомори, Альтману напоминает разрыв волокон по периферии и обусловлен скоплением пролиферирующих генетически измененных митохондрий под сарколеммой);

· гистохимические признаки недостаточности митохондриальных ферментов (цикла Кребса, респираторной цепи), особенно цитратсинтетазы, сукцинатдегидрогеназы и цитохром-С-оксидазы;

· субсарколеммальное накопление гликогена, липидов, кальция (считают, что накопление жировых капель в различных тканях, в т. ч. в мышечных волокнах, происходит в результате нарушения окисления жирных кислот в митохондриях).

При электронной микроскопии определяют:

· пролиферацию митохондрий;

· скопления аномальных митохондрий под сарколеммой;

· полиморфизм митохондрий с нарушением формы и размера, дезорганизацией крист;

· наличие в митохондриях паракристаллических включений;

· наличие митохондриально-липидных комплексов.

Генетический анализ для подтверждения диагноза митохондриального заболевания

Обнаружение любого вида митохондриальной мутации с достаточно высоким соотношением аномальной и нормальной мтДНК подтверждает диагноз митохондриального заболевания или синдрома. Отсутствие митохондриальной мутации позволяет предполагать у пациента наличие патологии, связанной с мутацией яДНК.

Известно, что уровень гетероплазмии во многом определяет фенотипическое проявление мутации. Поэтому, при проведении молекулярного анализа необходимо оценивать количество мутантных мтДНК. Оценка уровня гетероплазмии включает детекцию мутации, однако методы обнаружения мутации не всегда учитывают уровень ее гетероплазмии.

1. Метод клонирования дает достоверные количественные результаты (наиболее трудоемкий и продолжительный).

2. Флуоресцентная ПЦР предоставляет более точные результаты при меньшей трудоемкости (не позволяет выявлять мелкие делеции и вставки).

3. Денатурирующая высокоразрешающая жидкостная хроматография дает воспроизводимые результаты при любых видах мутаций (делеции, вставки, точковые мутации), находящихся в состоянии гетероплазмии (оценка уровня гетероплазмии более точна по сравнению с 2-мя предыдущими).

4. ПЦР в реальном времени используется для обнаружения и количественной оценки мутаций мтДНК. Используют: гидролизуемые зонды (TaqMan ), интеркалирующий краситель SYBR .

Наиболее точные оценки дают 3 метода:

· минисеквенирование ( SNaP - shot ) - определение однонуклеотидных замен, делеций и инсерций короткими зондами (15–30 нуклеотидов). Участок ДНК несущий мутацию, например C T выделяется и аплифицируется с помощью ПЦР. Этот участок является матрицей. Зонд имеет идентичную структуру, массу 5485 Да, но короче матрицы на один нуклеотид. К смеси зонда и матрицы добавляют нуклеотиды Т и С. Если к зонду присоединится нуклеотид С, то матрица «дикого» типа и ее масса составит 5758 Да. Если нуклеотид Т - матрица была мутантного типа с массой 6102 Да. Затем массу полученных образцов определяют с помощью масс-спектрометра.

· Пиросеквенирование - сочетание секвенирования и синтеза. Матрицу инкубируют в смеси из 4-х ферментов, 4-х дезоксинуклеотидтрифосфатов (dATP , d СТ P , dG Т P , d ТТ P ) и 4-х терминаторов транскрипции dNTP . Присоединение комплементарного нуклеотида сопровождается флуоресцентной биохимической реакцией.

· Biplex Invader - позволяет обнаруживать сразу 2 мутации .

Однако, при сопоставимой точности Biplex Invader оказался наиболее простым в использовании, а SNaPshot - наиболее дорогостоящим.

В настоящее время предпочтение отдается чиповым технологиям , позволяющим анализировать основные патогенные мутации мтДНК сразу во множестве образцов, устанавливая при этом уровень гетероплазмии каждой отдельной мутации.

Алгоритм диагностики митохондриальных заболеваний (по , 2007)

1. Необходимо доказательное клиническое подозрение на наличие митохондриальной болезни. В типичных случаях это может быть выявление клинической картины, характерной для той или иной формы митохондриальной энцефаломиопатии (MELAS, MERRF и т. д.), однако «классические» варианты этих фенотипов встречаются сравнительно редко.

Выявление общепринятых лабораторных маркеров митохондриальной дисфункции, мультисистемного, полиорганного поражения (для этого необходим соответствующий целенаправленный поиск), а также материнского типа наследования указывают на митохондриальную природу болезни.

2. Исследование мтДНК в лимфоцитах (у пациентов с четкими фенотипами MELAS, MERRF, атрофией зрительных нервов Лебера). При выявлении искомой мутации диагноз конкретной митохондриальной болезни может считаться подтвержденным.

3. При отсутствии выявляемых мутаций в лимфоцитах проводят биопсию скелетной мышцы (обычно четырехглавой или дельтовидной), т. к. скелетная мышца является более надежным источником мтДНК (отсутствие клеточных делений в мышце способствует «удержанию» митохондрий, содержащих мутантную мтДНК). Образцы мышечных биоптатов делят на 3 части: одна - для микроскопического исследования (гистология, гистохимия и электронная микроскопия), вторая - для энзимологического и иммунологического анализа (изучение характеристик компонентов дыхательной цепи), третья - для молекулярно-генетического анализа.

4. При отсутствии известных мутаций мтДНК в мышечной ткани проводят развернутый молекулярно-генетический анализ - секвенирование всей цепи мтДНК (или кандидатных генов ядерной ДНК) с целью выявления нового варианта мутации.

5. Идентификация конкретного биохимического дефекта в том или ином звене дыхательной цепи митохондрий является альтернативой изучения скелетной мускулатуры.

6. ЛЕЧЕНИЕ МИТОХОНДРИАЛЬНЫХ ЗАБОЛЕВАНИЙ

В настоящее времени митохондриальные забо­левания практически не излечимы. Однако возможно либо отсрочить развитие заболевания, либо избежать наследования патогенной митохондриальной мутации.

Принципы терапии митохондриальных заболеваний

1. Симптоматическое лечение:

Диета составляется в зависимости от патогенеза.

· При патологии транспорта и окисления жирных кислот рекомендуется частое и дробное питание со снижением калорийности пищи.

· При нарушении обмена пировиноградной кислоты для восполнения дефицита ацетил-Ко-А используется кетогенная диета.

· При дефиците ферментов ЦТК применяется частое кормление.

· При дефиците дыхательной цепи и окислительного фосфорилирования снижают количество углеводов.

Медикаментозная терапия.

· Препараты, активизирующие перенос электронов в дыхательной цепи (коэнзим Q 10 , витамины К1 и К3, препараты янтарной кислоты, цитохром С).

· Кофакторы энзимных реакций энергетического обмена (никотинамид, рибофлавин, карнитин, липоевая кислота и тиамин).

· Средства, уменьшающие степень лактат-ацидоза (дихлорацетат, димефосфон).

· Антиоксиданты (убихинон, витамин С и Е).

Исключение препаратов, ингибирующих энергообмен (барбитураты, хлорамфеникол).

ИВЛ, противосудорожные препараты, ферменты поджелудочной железы, переливание компонентов крови.

Митохондриальные болезни - большая гетерогенная группа наследственных заболеваний и патологических состояний, обусловленных нарушениями структуры, функций митохондрий и тканевого дыхания. По данным зарубежных исследователей, частота этих заболеваний у новорождённых составляет 1:5000.

Код по МКБ-10

Нарушения обмена веществ, класс IV, Е70-Е90.

Изучение природы этих патологических состояний было начато в 1962 г., когда группа исследователей описала больную 30 лет с нетиреоидным гиперметаболизмом, мышечной слабостью и высоким уровнем основного обмена. Было высказано предположение о связи этих изменений с нарушением процессов окислительного фосфорилирования в митохондриях мышечной ткани. В 1988 г. другие учёные впервые сообщили об обнаружении мутации в митохондриальной ДНК (мтДНК) у больных с миопатией и оптической нейропатией. Спустя 10 лет были найдены мутации ядерных генов, кодирующих комплексы дыхательной цепи у детей раннего возраста. Таким образом, сформировалось новое направление в структуре детских болезней - митохондриальная патология, митохондриальные миопатии, митохондриальные энцефаломиопатии.

Митохондрии - внутриклеточные органеллы, присутствующие в виде нескольких сотен копий во всех клетках (кроме эритроцитов) и продуцирующие АТФ. Длина митохондрии 1,5 мкм, ширина 0,5 мкм. Их обновление происходит непрерывно на протяжении всего клеточного цикла. Органелла имеет 2 мембраны - внешнюю и внутреннюю. От внутренней мембраны внутрь отходят складки, называемые кристами. Внутреннее пространство заполняет матрикс - основное гомогенное или тонкозернистое вещество клетки. В нём содержатся кольцевая молекула ДНК, специфические РНК, гранулы солей кальция и магния. На внутренней мембране фиксированы ферменты, участвующие в окислительном фосфорилировании (комплекс цитохромов b, с, а и аЗ) и переносе электронов. Это энергопреобразующая мембрана, которая превращает химическую энергию окисления субстратов в энергию, которая накапливается в виде АТФ, креатинфосфата и др. На наружной мембране сосредоточены ферменты, участвующие в транспорте и окислении жирных кислот. Митохондрии способны к самовоспроизведению.

Основная функция митохондрий - аэробное биологическое окисление (тканевое дыхание с использованием клеткой кислорода) - система использования энергии органических веществ с поэтапным её высвобождением в клетке. В процессе тканевого дыхания происходит последовательный перенос ионов водорода (протонов) и электронов через различные соединения (акцепторы и доноры) на кислород.

В процессе катаболизма аминокислот, углеводов, жиров, глицерола образуются углекислый газ, вода, ацетил-коэнзим А, пируват, оксалоацетат, кетоглутарат, которые затем вступают в цикл Кребса. Образовавшиеся ионы водорода акцептируются адениннуклеотидами - адениновыми (NAD +) и флавиновыми (FAD +) нуклеотидами. Восстановленные коферменты NADH и FADH окисляются в дыхательной цепи, которая представлена 5 дыхательными комплексами.

В процессе переноса электронов накапливается энергия в виде АТФ, креатин-фосфата и других макроэргических соединений.

Дыхательная цепь представлена 5 белковыми комплексами, которые осуществляют весь сложный процесс биологического окисления (табл. 10-1):

  • 1-й комплекс - NADH-убихинон-редуктаза (этот комплекс состоит из 25 полипетидов, синтез 6 из которых кодируется мтДНК);
  • 2-й комплекс - сукцинат-убихинон-оксидоредуктаза (состоит из 5-6 полипептидов, включая сукцинатдегидрогеназу, кодируется только мтДНК);
  • 3-й комплекс - цитохром С-оксидоредуктаза (переносит электроны от коэнзима Q на комплекс 4, состоит из 9-10 белков, синтез одного из них кодируется мтДНК);
  • 4-й комплекс - цитохромоксидаза [состоит из 2 цитохромов (а и аЗ), кодируется мтДНК];
  • 5-й комплекс - митохондриальная Н + -АТФаза (состоит из 12-14 субъединиц, осуществляет синтез АТФ).

Кроме того, электроны 4 жирных кислот, подвергающихся бета-окислению, переносит электронпереносящий белок.

В митохондриях осуществляется ещё один важный процесс - бета-окисление жирных кислот, в результате которого образуется ацетил-КоА и эфиры карнитина. В каждом цикле окисления жирных кислот происходят 4 энзиматические реакции.

Первый этап обеспечивают ацил-КоА-дегидрогеназы (коротко-, средне- и длинноцепочечные) и 2 переносчика электронов.

В 1963 г. было установлено, что митохондрии имеют собственный уникальный геном, наследуемый по материнской линии. Он представлен единственной небольшой кольцевой хромосомой длиной 16 569 п.н., кодирующей 2 рибосомальные РНК, 22 транспортные РНК и 13 субъединиц ферментных комплексов электронно-транспортной цепи (семь из них относятся к комплексу 1, один - к комплексу 3, три - к комплексу 4, два - к комплексу 5). Большинство митохондриальных белков, участвующих в процессах окислительного фосфорилирования (около 70), кодируются ядерной ДНК и лишь 2% (13 полипетидов) синтезируются в митохондриальном матриксе под контролем структурных генов.

Строение и функционирование мтДНК отличается от ядерного генома. Во-первых, она не содержит интронов, что обеспечивает высокую плотность генов по сравнению с ядерной ДНК. Во-вторых, большинство мРНК не содержит 5"-3"-нетранслируемые последовательности. В-третьих, мтДНК имеет D-петлю, которая представляет собой её регуляторную область. Репликация представляет собой двухступенчатый процесс. Выявлены также отличия генетического кода мтДНК от ядерной. Особо следует отметить, что существует большое число копий первой. Каждая митохондрия содержит от 2 до 10 копий и более. Учитывая тот факт, что клетки могут иметь в своём составе сотни и тысячи митохондрий, возможно существование до 10 тыс. копий мтДНК. Она весьма чувствительна к мутациям и в настоящее время идентифицировано 3 типа таких изменений: точковые мутации белков, кодирующих мтДНК-гены (mit- мутации), точковые мутации мтДНК-тРНК-генов (sy/7-мутации) и крупные перестройки мтДНК (р-мутации).

В норме весь клеточный генотип митохондриального генома идентичен (гомоплазмия), однако при возникновении мутаций часть генома остаётся идентичной, а другая - изменённой. Такое явление называется гетероплазмиеи. Проявление мутантного гена происходит тогда, когда количество мутаций достигает определённого критического уровня (порога), после чего наступает нарушение процессов клеточной биоэнергетики. Это объясняет то, что при минимальных нарушениях в первую очередь будут страдать наиболее энергозависмые органы и ткани (нервная система, головной мозг, глаза, мышцы).



Митохондриальная патология и проблемы патогенеза психических нарушений

В.С. Сухоруков

The mitochondrial pathology and problems of pathophysiology of mental disorders

V.S. Sukhorukov
Московский НИИ педиатрии и детской хирургии Росмедтехнологий

В течение последних десятилетий в медицине активно развивается новое направление, связанное с изучением роли нарушений клеточного энергообмена - процессов, затрагивающих универсальные клеточные органеллы - митохондрии. В связи с этим появилось понятие «митохондриальные болезни».

Митохондрии выполняют много функций, однако их основная задача - образование молекул АТФ в биохимических циклах клеточного дыхания. Основными происходящими в митохондриях процессами являются цикл трикарбоновых кислот, окисление жирных кислот, карнитиновый цикл, транспорт электронов в дыхательной цепи (с помощью I-IV ферментных комплексов) и окислительное фосфорилирование (V ферментный комплекс) . Нарушения функций митохондрий относятся к важнейшим (часто ранним) этапам повреждения клеток. Эти нарушения ведут к недостаточности энергообеспечения клеток, нарушению многих других важных обменных процессов, дальнейшему развитию клеточного повреждения вплоть до гибели клетки. Для клинициста оценка степени митохондриальной дисфункции имеет существенное значение как для формирования представлений о сути и степени происходящих на тканевом уровне процессов, так и для разработки плана терапевтической коррекции патологического состояния .

Понятие «митохондриальные болезни» сформировалось в медицине в конце ХХ века благодаря открытым незадолго до этого наследственным заболеваниям, основными этиопатогенетическими факторами которых являются мутации генов, ответственных за синтез митохондриальных белков . В первую очередь были изучены болезни, связанные с мутациями открытой в начале 60-х годов митохондриальной ДНК. Эта ДНК, имеющая относительно простое строение и напоминающая кольцевую хромосому бактерий, была детально изучена. Полная первичная структура митохондриальной ДНК (митДНК) человека была опубликована в 1981 г.), и уже в конце 80-х годов была доказана ведущая роль ее мутаций в развитии ряда наследственных заболеваний. К последним относятся наследственная атрофия зрительных нервов Лебера, синдром NARP (нейропатия, атаксия, пигментный ретинит), синдром MERRF (миоклонус эпилепсия с «рваными» красными волокнами в скелетных мышцах), синдром MELAS (митохондриальная энцефаломиопатия, лактат-ацидоз, инсультоподобные эпизоды), синдром Кернса-Сейра (пигментный ретинит, наружная офтальмоплегия, блокада сердца, птоз, мозжечковый синдром), синдром Пирсона (поражение костного мозга, панкреатическая и печеночная дисфункции) и др. Число описаний таких болезней увеличивается с каждым годом. По последним данным, совокупная частота наследственных болезней, связанных с мутациями митДНК, достигает 1:5000 человек общего населения.

В меньшей степени изучены наследственные митохондриальные дефекты, связанные с повреждением ядерного генома. На сегодняшний день их известно сравнительно немного (различные формы младенческих миопатий, болезни Альперса, Лея, Барта, Менкеса, синдромы недостаточности карнитина, некоторых ферментов цикла Кребса и дыхательной цепи митохондрий). Можно предположить, что их число должно быть гораздо больше, поскольку гены, кодирующие информацию 98% митохондриальных белков, находятся именно в ядре.

В целом можно сказать, что изучение болезней, причиной которых являются наследственные нарушения митохондриальных функций, произвело своего рода революцию в современных представлениях о медицинских аспектах энергетического обмена человека. Помимо вклада в теоретическую патологию и медицинскую систематику, одним из главных достижений медицинской «митохондриологии» явилось создание эффективного диагностического инструментария (клинические, биохимические, морфологические и молекулярногенетические критерии полисистемной митохондриальной недостаточности), позволившего оценивать полисистемные нарушения клеточного энергообмена.

Что касается психиатрии, то уже в 30-е годы ХХ столетия были получены данные о том, что у больных шизофренией после физической нагрузки резко повышается уровень молочной кислоты. Позднее в виде оформленного научного предположения появился постулат о том, что какие-то регулирующие энергообмен механизмы ответственны за отсутствие «психической энергии» при этом заболевании . Однако еще довольно долго такие предположения воспринимались как, мягко говоря, «малоперспективные с научной точки зрения». В 1965 г. S. Kеty писал: «Трудно представить, что генерализованный дефект энергетического метаболизма - процесс, имеющий фундаментальное значение для каждой клетки тела, - может нести ответственность за высокоспециализированные особенности шизофрении ». Тем не менее в последующее 40 лет ситуация изменилась. Успехи «митохондриальной медицины» были столь убедительны, что стали привлекать внимание более широкого круга врачей, в том числе и психиатров. Итог последовательному росту числа соответствующих исследований был подведен в работе A. Gardner и R. Boles «Есть ли будущее у «митохондриальной психиатрии»?» . Вопросительная форма вынесенного в название постулата несла в себе оттенок преувеличенной скромности. Объем информации, приведенный в статье, был настолько большим, а логика авторов - так безупречна, что сомневаться в перспективности «митохондриальной психиатрии» уже не приходилось.

На сегодняшний день существует несколько групп доказательств участия нарушения энергетических процессов в патогенезе психических заболеваний. Ниже рассматривается каждая из групп доказательств.

Нарушения психики при митохондриальных болезнях

Различия в пороговой чувствительности тканей к недостаточности продукции АТФ накладывает существенный отпечаток на клиническую картину митохондриальных болезней. В этом отношении в первую очередь представляет интерес нервная ткань как наиболее энергозависимая. От 40 до 60% энергии АТФ в нейронах тратится на поддержание ионного градиента на их наружной оболочке и осуществление передачи нервного импульса. Поэтому нарушения функции центральной нервной системы при классических «митохондриальных болезнях» имеют первостепенное значение и дают основание называть основной симптомокомплекс «митохондриальными энцефаломиопатиями». Клинически на первый план при этом вышли такие мозговые нарушения, как умственная отсталость, судороги и инсультоподобные эпизоды. Выраженность этих форм патологии в сочетании с тяжелыми соматическими расстройствами может быть настолько большой, что другие, более мягкие нарушения, связанные, в частности, с личностными или эмоциональными изменениями, остаются в тени.

Накопление сведений о психических расстройствах при митохондриальных болезнях стало происходить в сравнении с указанными выше нарушениями значительно позднее. Тем не менее сейчас имеется достаточное число доказательств их существования. Были описаны депрессивные и биполярные аффективные расстройства, галлюцинации и личностные изменения при синдроме Кернса-Сейра , синдроме MELAS , хронической прогрессирующей наружной офтальмоплегии и наследственной оптической нейропатии Лебера .

Достаточно часто развитию классических признаков митохондриального заболевания предшествуют умеренно выраженные психические расстройства. Поэтому больные могут первоначально наблюдаться у психиатров. В этих случаях другие симптомы митохондриальной болезни (фотофобия, вертиго, повышенная утомляемость, мышечная слабость и др.) иногда расцениваются как психосоматические нарушения . Известный исследователь митохондриальной патологии P. Chinnery в статье, написанной совместно с D. Turnbull указывает: «Психиатрические осложнения постоянно сопутствуют митохондриальному заболеванию. Обычно они принимают форму реактивной депрессии... Мы неоднократно наблюдали случаи тяжелой депрессии и суицидальных попыток еще до того (курсив авторов статьи), как был установлен диагноз».

Трудности в установлении истинной роли психических расстройств при рассматриваемых болезнях бывают связаны также с тем, что психиатрические симптомы и синдромы могут расцениваться в одних случаях как реакция на трудную ситуацию, в других - как следствие органического поражения головного мозга (в последнем случае термин «психиатрия» вообще не используется).

По материалам ряда обзоров приведем список психических нарушений, описанных у больных с доказанными формами митохондриальных заболеваний 1 . Эти нарушения можно разделить на три группы. I. Психотические расстройства - галлюцинации (слуховые и зрительные), симптомы шизофрении и шизофреноподобных состояний, делирий. В ряде случаев указанные расстройства следуют за прогрессирующими когнитивными нарушениями. II. Аффективные и тревожные расстройства - биполярные и униполярные депрессивные состояния (они описываются наиболее часто), панические состояния, фобии. III. Когнитивные нарушения в виде синдрома дефицита внимания с гиперактивностью. Этот синдром был описан не только у больных с диагнозом «митохондриального» заболевания, но и у их родственников. Описан , в частности, случай, когда заболевание, в основе которого лежала делеция одной нуклеотидной пары митДНК в области гена транспортной РНК, впервые проявилось в школьные годы у мальчика в виде синдрома дефицита внимания с гиперактивностью. Прогрессирование митохондриальной энцефаломиопатии привело к смерти этого больного в возрасте 23 лет. IV. Расстройства личности. Такие расстройства были описаны в ряде случаев с подтвержденным молекулярногенетическими исследованиями диагнозом. Как правило, расстройства личности развиваются после когнитивных нарушений. Описан случай аутизма у больного с точковой мутацией митДНК в области гена транспортной РНК .

Общие признаки, характерные для митохондриальных и психических заболеваний

Речь идет об определенном клиническом сходстве некоторых психических заболеваний и митохондриальных синдромов, а также общих типах их наследования.

Прежде всего обращают на себя внимание данные о превалировании случаев наследования по материнской линии некоторых психических заболеваний, в частности биполярных расстройств . Такое наследование не может быть объяснено с позиций аутосомных механизмов, а равное количество мужчин и женщин среди пациентов с биполярными нарушениями делает маловероятным предположение о возможности в данном случае Х-сцепленного наследования. Наиболее адекватным объяснением при этом может быть концепция передачи наследственной информации через митДНК. Существует также тенденция к материнскому типу наследования и у больных шизофренией . Правда, в этом отношении имеется альтернативное используемому в нашем контексте объяснение: предполагается, что данная тенденция может обусловливаться неравными условиями больных разного пола в поиске партнера .

Косвенным подтверждением связи митохондриальных и некоторых психических заболеваний, является также тенденция к цикличности их клинических проявлений . В отношении таких болезней, как биполярные расстройства, это общеизвестно. Однако в настоящее время и в митохондриологии начинают накапливаться данные об ультра-, циркадианных и сезонных ритмах клинических проявлений дизэнергетических состояний. Эта особенность даже определила название одной из их нозологических митохондриальных цитопатий - «синдром циклической рвоты» («cyclic vomiting syndrome»).

Наконец, рассматриваемое сходство двух групп заболеваний выступает в сопутствующих их соматических признаках. Такие хорошо знакомые психиатрам психосоматические симптомы, как нарушения слуха, мышечная боль, утомляемость, мигрени, синдром раздраженного кишечника , постоянно описываются в симптомокомплексе митохондриальных заболеваний. Как пишут A. Gardner и R. Bоles , «если митохондриальная дисфункция является одним из факторов риска развития некоторых психиатрических заболеваний, эти коморбидные соматические симптомы скорее могут быть следствием именно митохондриальной дисфункции, а не проявлением «коммуникативного дистресса», «ипохондриального паттерна» или «вторичного приобретения» («secondary gain»)». Иногда такие термины используются для обозначения феномена соматизации психических расстройств .

В заключение укажем еще на одно сходство: определяемое с помощью магниторезонансной томографии повышение плотности белого вещества отмечается не только при биполярных аффективных нарушениях и большой депрессии с поздним дебютом , но и в случаях развития ишемических изменений при митохондриальных энцефалопатиях .

Признаки митохондриальной дисфункции при психических заболеваниях

Шизофрения

Как говорилось выше, упоминания о признаках лактатацидоза и некоторых других биохимических изменений, свидетельствующие о нарушении энергообмена при шизофрении, начали появляться с 30-х годов ХХ века. Но только начиная с 90-х годов число соответствующих работ стало нарастать особенно заметно, причем вырос и методический уровень лабораторных исследований, что нашло отражение в ряде обзорных публикаций .

На основе опубликованных работ D. Ben-Shachar и D. Laifenfeld разделили все признаки митохондриальных нарушений при шизофрении на три группы: 1) морфологические нарушения митохондрий; 2) признаки нарушения системы окислительного фосфорилирования; 3) нарушения экспрессии генов, ответственных за митохондриальные белки. Это деление может быть подкреплено примерами из других работ.

При аутопсии мозговой ткани больных шизофренией L. Kung и R. Roberts было выявлено снижение числа митохондрий во фронтальной коре, хвостатом ядре и скорлупе. При этом было отмечено, что оно было менее выражено у больных, получавших нейролептики, в связи с чем авторы сочли возможным говорить о нормализации митохондриальных процессов в мозге под влиянием нейролептической терапии. Это дает основание упомянуть и статью Н.С. Коломеец и Н.А. Урановой о гиперплазии митохондрий в пресинаптических терминалях аксонов в области substantia nigra при шизофрении.

L. Cavelier и соавт. , исследуя аутопсийный материал мозга больных шизофренией, выявили снижение активности IV комплекса дыхательной цепи в хвостатом ядре.

Приведенные результаты позволили выдвинуть предположение о первичной или вторичной роли митохондриальной дисфункции в патогенезе шизофрении. Однако исследованный аутопсийный материал относился к больным, получавшим лечение нейролептиками, и, естественно, митохондриальные нарушения были связаны с лекарственным воздействием. Отметим, что подобные предположения, часто небезосновательные, сопровождают всю историю обнаружения митохондриальных изменений в различных органах и системах при психических и других заболеваниях. Что касается возможного влияния собственно нейролептиков, то следует напомнить, что склонность к лактат-ацидозу у больных шизофренией обнаружена еще в 1932 г., почти за 20 лет до их появления.

Снижение активности различных компонентов дыхательной цепи было обнаружено во фронтальной и височной коре, а также базальных ганглиях мозга и иных тканевых элементах - тромбоцитах и лимфоцитах больных шизофренией. Это позволило говорить о полисистемном характере митохондриальной недостаточности . S. Whatlеy и соавт. , в частности, показали, что во фронтальной коре снижается активность IV комплекса, в височной - I, III и IV комплексов; в базальных ганглиях - I и III комплексов, никаких изменений при этом не было обнаружено в мозжечке. Следует отметить, что во всех исследованных участках активность внутримитохондриального фермента - цитратсинтазы - соответствовала контрольным значениям, что дало основание говорить о специфичности полученных результатов для шизофрении.

Дополнительно к рассмотренным исследованиям можно привести выполненную в 1999-2000 гг. работу J. Prince и соавт. , которые исследовали активность дыхательных комплексов в разных участках мозга больных шизофренией. Эти авторы не обнаружили признаков изменения активности I комплекса, однако активность IV комплекса была снижена в хвостатом ядре. При этом последняя, так же как и активность II комплекса, была повышена в скорлупе и в прилежащем ядре. Причем повышение активности IV комплекса в скорлупе достоверно коррелировало с выраженностью эмоциональной и когнитивной дисфункции, но не со степенью моторных нарушений.

Следует отметить, что авторы большинства приведенных выше работ признаки нарушений энергообмена объясняли воздействием нейролептиков. В 2002 г. были опубликованы очень интересные в этом отношении данные A. Gardner и соавт. о митохондриальных ферментах и продукции АТФ в мышечных биоптатах у больных шизофренией, лечившихся нейролептиками и не лечившихся ими. Они установили, что снижение активности митохондриальных ферментов и продукции АТФ было обнаружено у 6 из 8 не получавших нейролептики больных, а у находящихся на нейролептической терапии больных было установлено повышение продукции АТФ. Эти данные в определенной степени подтвердили сделанные ранее выводы в работе L. Kung и R. Roberts .

В 2002 г. были опубликованы результаты еще одной примечательной работы . В ней была изучена активность I комплекса дыхательной цепи в тромбоцитах 113 больных шизофренией в сравнении с 37 здоровыми. Больные были разделены на три группы: 1-я - с острым психотическим эпизодом, 2-я - с хронической активной формой и 3-я - с резидуальной шизофренией. Результаты показали, что активность I комплекса была достоверно повышена по сравнению с контролем у больных групп 1 и 2 и снижена у больных группы 3. Более того, была выявлена достоверная корреляция между полученными биохимическими показателями и тяжестью клинических симптомов заболевания. Аналогичные изменения были получены при исследовании в этом же материале РНК и белка флавопротеиновых субъединиц I комплекса. Результаты этого исследования, таким образом, не только подтвердили высокую вероятность полисистемной митохондриальной недостаточности при шизофрении, но и позволили авторам рекомендовать соответствующие лабораторные методы для мониторинга заболевания.

Спустя 2 года в 2004 г. D. Ben-Shachar и соавт. опубликовали интересные данные о влиянии на дыхательную цепь митохондрий дофамина, которому отводят существенную роль в патогенезе шизофрении . Было установлено, что дофамин может ингибировать активность I комплекса и продукцию АТФ. При этом активность IV и V комплексов не изменяется. Оказалось, что в отличие от дофамина норадреналин и серотонин на продукцию АТФ не влияют.

Примечателен сделанный в указанных выше работах акцент на дисфункции I комплекса дыхательной цепи митохондрий. Такого рода изменение может отражать относительно умеренные нарушения митохондриальной активности, более значимые с точки зрения функциональной регуляции энергообмена, чем грубые (близкие к летальным для клетки) падения активности цитохромоксидазы .

Кратко остановимся теперь на генетическом аспекте митохондриальной патологии при шизофрении.

В 1995-1997 гг. L. Cavelier и соавт. было установлено, что уровень «обычной делеции» митДНК (наиболее часто встречающаяся делеция 4977 пар нуклеотидов, затрагивающая гены субъединиц I, IV и V комплексов и лежащая в основе нескольких тяжелых митохондриальных заболеваний, таких как синдром Кернса-Сейра и др.) не изменен в аутопсийном материале мозга больных шизофренией, не накапливается с возрастом и не коррелирует с измененной активностью цитохромоксидазы. Секвенируя митохондриальный геном у больных шизофренией, исследователи этой группы показали наличие отличного от контроля полиморфизма гена цитохрома b.

В указанные годы была опубликована также серия работ группы R. Marchbanks и соавт. , изучавших экспрессию как ядерной, так и митохондриальной РНК во фронтальной коре в случаях шизофрении. Они выявили, что все количественно увеличенные по сравнению с контролем последовательности имели отношение к митохондриальным генам. Была существенно повышена, в частности, экспрессия митохондриального гена 2-й субъединицы цитохромоксидазы. Четыре других гена имели отношение к рибосомальной РНК митохондрий.

Японские исследователи , исследуя 300 случаев шизофрении, не нашли признаков мутации 3243AG (вызывающей нарушение в I комплексе при синдроме MELAS). Не было обнаружено повышенной мутационной частоты в митохондриальных генах 2-й субъединицы I комплекса, цитохрома b и митохондриальных рибосом при шизофрении в работе K. Gentry и V. Nimgaonkar .

R. Marchbanks и соавт. обнаружили мутацию в 12027 паре нуклеотидов митДНК (ген 4-й субъединицы I комплекса), которая имелась у больных шизофренией мужчин и которой не было у женщин.

Характеристика трех ядерных генов комплекса I была изучена в префронтальной и зрительной коре больных шизофренией R. Karry и соавт. . Они установили, что транскрипция и трансляция некоторых субъединиц была снижена в префронтальной коре и повышена - в зрительной (авторы интерпретировали эти данные в соответствии с представлениями о «гипофронтальности» при шизофрении). При изучении же генов (включая гены митохондриальных белков) в ткани гиппокампа у получавших лечение нейролептиками больных шизофренией никаких изменений выявлено не было .

Японские исследователи K. Iwamoto и соавт. , изучая изменения в генах, ответственных за наследственную информацию для митохондриальных белков, в префронтальной коре при шизофрении в связи с лечением нейролептиками, получили доказательства в пользу лекарственного воздействия на клеточный энергообмен.

Приведенные выше результаты могут быть дополнены данными прижизненных исследований, которые были приведены в обзоре W. Kаton и соавт. : при изучении с помощью магнитно-резонансной спектроскопии распределения фосфорного изотопа 31Р было выявлено снижение уровня синтеза АТФ в базальных ганглиях и височной доле головного мозга больных шизофренией.

Депрессия и биполярные аффективные расстройства

Японскими исследователями T. Kato и соавт. при магнитно-резонансной спектроскопии было установлено снижение внутриклеточной рН и уровня фосфокреатина в лобной доле головного мозга у больных с биполярными расстройствами, в том числе не получавших лечения. Этими же авторами снижение уровня фосфокреатина в височной доле было выявлено у резистентных к литиевой терапии больных. Другие авторы нашли снижение уровня АТФ в лобной доле и базальных ганглиях больных с большой депрессией. Заметим, что сходные признаки наблюдались у больных некоторыми митохондриальными болезнями .

Что касается молекулярно-генетических данных, сразу следует отметить, что результаты ряда работ свидетельствуют об отсутствии доказательств участия делеций митДНК в развитии расстройств настроения.

Ряд исследований полиморфизма митДНК, помимо самого факта различия ее гаплотипов у больных с биполярными нарушениями и обследуемых из контрольной группы, выявили некоторые мутации, характерные для первых, в частности, в позициях 5178 и 10398 - обе позиции находятся в зоне генов I комплекса .

Имеются сообщения о наличии мутаций в генах I комплекса, причем не только в митохондриальных, но и ядерных. Так, в культурах лимфобластоидных клеток, полученных от больных с биполярными расстройствами, была обнаружена мутация в гене NDUFV2, локализованного в 18-й хромосоме (18р11), и кодирующего одну из субъединиц I комплекса . При секвенировании митДНК больных с биполярными нарушениями была выявлена характерная для них мутация в позиции 3644 гена субъединицы ND1, также относящейся к I комплексу . Повышение уровня трансляции (но не транскрипции) было обнаружено в отношении некоторых субъединиц I комплекса в зрительной коре больных с биполярными расстройствами . Среди других исследований приведем две работы , в которых были исследованы гены дыхательной цепи и найдены их молекулярногенетические нарушения в префронтальной коре и гиппокампе больных с биполярными расстройствами. В одной из работ A. Gardner и соавт. у больных с большой депрессией был выявлен ряд нарушений митохондриальных ферментов и снижение уровня продукции АТФ в скелетно-мышечной ткани, при этом была обнаружена достоверная корреляция между степенью снижения продукции АТФ и клиническими проявлениями психического расстройства.

Другие психические расстройства

Исследований, касающихся митохондриальной дисфункции при других психических расстройствах, немного. Часть из них упоминалась в предыдущих разделах обзора. Здесь же специально упомянем работу P. Filipek и соавт. , в которой были описаны 2 ребенка с аутизмом и мутацией в 15-й хромосоме, в участке 15q11-q13. У обоих детей выявлены умеренная моторная задержка развития, летаргия, выраженная гипотония, лактат-ацидоз, снижение активности III комплекса и митохондриальная гиперпролиферация в мышечных волокнах. Эта работа примечательна тем, что в ней впервые были описаны митохондриальные нарушения в симптомокомплексе заболевания, этиологически связанного с определенным участком генома.

Генеалогические данные, касающиеся возможной роли митохондриальных нарушений в патогенезе психических заболеваний

Выше мы уже упоминали о такой особенности ряда психических болезней, как повышенная частота случаев наследования по материнской линии, которая может косвенно указывать на участие митохондриальной патологии в их патогенезе. Однако в литературе существуют и более убедительные доказательства последнего.

В 2000 г. были опубликованы данные, полученные F. McMahon и соавт. , секвенировавших весь митохондриальный геном у 9 неродственных пробандов, каждый из которых происходил из большой семьи с передачей биполярных расстройств по материнской линии. Явных отличий гаплотипов по сравнению с контрольными семьями выявлено не было. Однако по некоторым позициям митДНК (709, 1888, 10398 и 10463) была обнаружена диспропорция между больными и здоровыми. При этом можно отметить совпадение данных по позиции 10398 с уже упоминавшимися данными японских авторов , которые предположили, что 10398А-полиморфизм митДНК является фактором риска развития биполярных нарушений.

Наиболее существенным генеалогическим доказательством роли митохондриальных дисфункций в развитии психических расстройств являются факты наличия у больных с классическими митохондриальными болезнями родственников (чаще по материнской линии) с умеренными психическими нарушениями. Среди таких нарушений часто упоминаются тревога и депрессия . Так, в работе J. Shoffner и соавт. было установлено, что выраженность депрессии у матерей «митохондриальных» больных в 3 раза превышает показатели контрольной группы.

Заслуживает внимания работа B. Burnet и соавт. , которые в течение 12 мес проводили анонимный опрос больных с митохондриальными заболеваниями, а также членов их семей. В числе вопросов были касающиеся состояния здоровья родителей и ближайших родственников больных (по отцовской и материнской линиям). Были, таким образом, исследованы 55 семей (группа 1) с предполагаемым материнским и 111 семей (группа 2) с предполагаемым нематеринским типом наследования митохондриального заболевания. В результате у родственников пациентов по материнской линии, по сравнению с отцовской, была выявлена большая частота нескольких патологических состояний. Среди них наряду с мигренями и синдромом раздраженного кишечника была и депрессия. В группе 1 кишечные дисфункции, мигрень и депрессия наблюдались у бoльшего процента матерей из обследованных семей - 60, 54 и 51% соответственно; во 2-й группе - у 16, 26 и 12% соответственно (р<0,0001 для всех трех симптомов). У отцов из обеих групп это число составляло примерно 9-16%. Достоверное преобладание указанных признаков имело место и у других родственников по материнской линии. Этот факт является существенным подтверждением гипотезы о возможной связи депрессии с неменделевским наследованием, в частности с дисфункцией митохондрий.

Фармакологические аспекты митохондриальной патологии при психических заболеваниях

Влияние применяемых в психиатрии лекарственных средств на функции митохондрий

В предыдущих разделах обзора мы уже кратко касались вопросов терапии. Обсуждался, в частности, вопрос о возможном действии нейролептиков на митохондриальные функции. Было установлено, что хлорпромазин и другие производные фенотиазина, а также трициклические антидепрессанты, способны влиять на энергообмен в ткани мозга : они могут снижать уровень окислительного фосфорилирования в отдельных участках мозга, способны разобщать окисление и фосфорилирование, снижать активность I комплекса и АТФазы, понижать уровень утилизации АТФ. Однако интерпретация фактов в этой области требует большой осторожности. Так, разобщение окисления и фосфорилирования под влиянием нейролептиков отмечено отнюдь не во всех областях мозга (она не определяется в коре, таламусе и хвостатом ядре). Кроме того, существуют экспериментальные данные о стимулировании митохондриального дыхания нейролептиками . В предыдущих разделах обзора мы также приводим работы, свидетельствующие о позитивном действии нейролептиков на функцию митохондрий.

Карбамазепин и вальпроаты известны своей способностью подавлять функции митохондрий. Карбамазепин приводит к повышению уровня лактата в мозге, а вальпроаты способны ингибировать процессы окислительного фосфорилирования . Такого же рода эффекты (правда, только в высоких дозах) были выявлены при экспериментальном изучении ингибиторов обратного захвата серотонина .

Литий, достаточно широко используемый при лечении биполярных расстройств , также, по-видимому, может оказывать положительное влияние на процессы клеточного энергообмена. Он конкурирует с ионами натрия, участвуя в регуляции работы кальциевых насосов в митохондриях. A. Gardner и R. Boles в своем обзоре приводят слова T. Gunter - известного специалиста по обмену кальция в митохондриях, который полагает, что литий «может воздействовать на скорость, с которой эта система адаптируется к различным состояниям и различной потребности в АТФ». Кроме того, предполагается, что литий снижает активацию апоптозного каскада .

A. Gardner и R. Boles приводят в упомянутом обзоре много косвенных клинических свидетельств позитивного эффекта психотропных препаратов на симптомы, предположительно зависящие от дизэнергетических процессов. Так, внутривенное введение аминазина и других нейролептиков снижает головную боль при мигрени . Хорошо известна эффективность трициклических антидепрессантов в лечении мигрени , синдрома циклической рвоты и синдрома раздраженного кишечника . Карбамазепин и вальпроаты используются в лечении невралгий и других болевых синдромов, включая мигрень . При лечении мигрени также эффективны литий и ингибиторы обратного захвата серотонина .

Анализируя приведенную выше достаточно противоречивую информацию, можно сделать вывод, что психотропные средства, несомненно, способны влиять на процессы энергообмена головного мозга и митохондриальную активность. Причем влияние это - не однозначно стимулирующее или ингибирующее, а, скорее, «регулирующее». Оно при этом может быть разным в нейронах различных отделов мозга.

Сказанное выше позволяет предположить, что недостаточность энергии в мозге, возможно, касается в первую очередь областей особо затронутых патологическим процессом.

Эффективность энерготропных препаратов при психических расстройствах

В аспекте рассматриваемой проблемы важно получение свидетельств об уменьшении или исчезновении психопатологических составляющих митохондриальных синдромов.

В указанном аспекте в первую очередь заслуживает внимания сообщение T. Suzuki и соавт. о больном с шизофреноподобными расстройствами на фоне синдрома MELAS. После применения коэнзима Q10 и никотиновой кислоты у пациента на несколько дней исчез мутизм. Имеется также работа , в которой приведены данные об успешном применении дихлорацетата (часто употребляемого в «митохондриальной медицине» для снижения уровня лактата) у 19-летнего мужчины с синдромом MELAS, в отношении влияния на картину делирия со слуховыми и зрительными галлюцинациями.

В литературе имеется также описание истории больного с синдромом MELAS с выявленной точковой мутацией 3243 митДНК. У этого пациента развился психоз со слуховыми галлюцинациями и бредом преследования, который удалось купировать в течение недели низкими дозами галоперидола. Однако позднее у него развились мутизм и аффективная тупость, которые не поддавались лечению галоперидолом, но исчезли после лечения в течение месяца идебеноном (синтетический аналог коэнзима Q10) в дозе 160 мг/сут . Еще у одной пациентки с синдромом MELAS коэнзим Q10 в дозе 70 мг/сут помог справиться с манией преследования и агрессивным поведением. Успешность применения коэнзима Q10 при лечении синдрома MELAS констатирована и в работе : речь идет о больном, у которого не только предотвратили инсультоподобные эпизоды, но и купировали головные боли, тиннит и психотические эпизоды.

Имеются сообщения и об эффективности энерготропной терапии у больных при психических заболеваниях . Так, был описан 23-летний больной с терапевтически резистентной депрессией, выраженность которой существенно уменьшилась после 2-месячного применения коэнзима Q10 в дозе 90 мг в сутки . Подобный же случай описан и в работе . Применение карнитина в комплексе с кофакторами энергообмена оказалось эффективным при лечении аутизма .

Таким образом, в современной литературе имеются определенные доказательства существенной роли митохондриальных нарушений в патогенезе психических расстройств. Отметим, что в этом обзоре мы не останавливались на нейродегенеративных болезнях пожилого возраста, для большинства которых важное значение митохондриальных нарушений уже доказано, и их рассмотрение требует отдельной публикации.

На основании приведенных данных можно утверждать, что назрела необходимость объединения усилий психиатров и специалистов, занимающихся митохондриальными болезнями, направленных как на изучение дизэнергетических основ нарушений высшей нервной деятельности, так и анализ психопатологических проявлений болезней, связанных с нарушениями клеточного энергообмена. В этом аспекте требуют внимания как новые диагностические (клинические и лабораторные) подходы, так и разработка новых способов лечения.

1 Следует отметить, что среди cоответствующих описаний большое место занимают случаи с выявленной мутацией митДНК 3243AG - общепризнанной причиной развития синдрома MELAS.

Литература

  1. Кнорре Д.Г., Мызина С.Д. Биологическая химия. М: Наука 2002.
  2. Ленинджер А. Основы биохимии. Под ред. В.А. Энгельгардта. М: Мир 1985.
  3. Лукьянова Л.Д. Митохондриальная дисфункция - типовой патологический процесс, молекулярный механизм гипоксии. В кн.: Проблемы гипоксии: молекулярные, физиологические и медицинские аспекты. Под ред. Л.Д. Лукьяновой, И.Б. Ушакова. М - Воронеж: Истоки 2004; 8-50.
  4. Северин Е.С., Алейникова Т.Л., Осипов Е.В. Биохимия. М: Медицина 2000.
  5. Сухоруков В.С. Врожденные дисфункции митохондриальных ферментов и их роль в формировании тканевой гипоксии и связанных с ней патологических состояний. В кн.: Проблемы гипоксии: молекулярные, физиологические и медицинские аспекты. Под ред. Л.Д. Лукьяновой, И.Б.Ушакова. М: Истоки 2004; 439-455.
  6. Сухоруков В.С. К разработке рациональных основ энерготропной терапии. Рациональная фармакотер 2007; 2: 40-47.
  7. Altschule M.D. Carbohydrate metabolism in mental disease: associated changes in phosphate metabolism. In: H.E. Himwich (ed.). Biochemistry, schizophrenias, and affective illnesses. Baltimore 1979; 338-360.
  8. Altshuler L.L., Curran J.G., Hauser P. et al. T2 hyperintensities in bi polar disorder; magnetic resonance imaging comparison and literature meta-analysis. Am J Psychiat 1995; 152: 1139-1144.
  9. Andersen J.M., Sugerman K.S., Lockhart J.R., Weinberg W.A. Effective prophylactic therapy for cyclic vomiting syndrome in children using amitri ptyline or cyproheptadine. Pediatrics 1997; 100: 977-81.
  10. Baldassano C.F., Ballas C.A., O’Reardon J.P. Rethinking the treatment paradigm for bi polar depression: the importance of longterm management. CNS Spectr 2004; 9: Suppl 9: 11-18.
  11. Barkovich A.J., Good W.V., Koch T.K., Berg B.O. Mitochondrial disorders: analysis of their clinical and imaging characteristics. AJNR Am J Neuroradiol 1998; 14: 1119-1137.
  12. Ben-Shachar D. Mitochondrial dysfunction in schizophrenia: a possible linkage to dopamine. J Neurochem 2002; 83: 1241-1251.
  13. Ben-Shachar D., Laifenfeld D. Mitochondria, synaptic plasticity, and schizophrenia. Int Rev Neurobiol 2004; 59: 273-296.
  14. Ben-Shachar D., Zuk R., Gazawi H., Ljubuncic P. Dopamine toxicity involves mitochondrial complex I inhibition: implications to dopamine-related neuropsychiatric disorders. Biochem Pharmacol 2004; 67: 1965-1974.
  15. Berio A., Piazzi A. A case of Kearns-Sayre syndrome with autoimmune thyroiditis and possible Hashimoto encephalopathy. Panminerva Med 2002; 44: 265-269.
  16. Boles R.G., Adams K., Ito M., Li B.U. Maternal inheritance in cyclic vomiting syndrome with neuromuscular disease. Am J Med Genet A 2003; 120: 474-482.
  17. Boles R.G., Burnett B.B., Gleditsch K. et al. A high predisposition to depression and anxiety in mothers and other matrilineal relatives of children with presumed maternally inherited mitochondrial disorders. Am J Med Genet Neuropsychiatr Genet 2005; 137: 20-24.
  18. Brown F.W., Golding J.M., Smith G.R.Jr. Psychiatric comorbidity in primary care somatization disorder. Psychosom Med 1990; 52: 445- 451.
  19. Burnet B.B., Gardner A., Boles R.G. Mitochondrial inheritance in depression, dysmotility and migraine? J Affect Disord 2005; 88: 109- 116.
  20. Cavelier L., Jazin E.E., Eriksson I. et al. Decreased cytochrome-c oxidase activity and lack of age-related accumulation of mitochondrial DNA deletions in the brains of schizophrenics. Genomics 1995; 29: 217-224.
  21. Chang T.S., Johns D.R., Walker D. et al. Ocular clinicopathologic study of the mitochondrial encephalomyopathy overlap syndromes. Arch Ophthalmol 1993; 111: 1254-1262.
  22. Chinnery P.F., Turnbull D.M. Mitochondrial medicine. Q J Med 1997; 90: 657-667.
  23. Citrome L. Schizophrenia and valproate. Psychopharmacol Bull 2003;7: Suppl 2: 74-88.
  24. Corruble E., Guelfi J.D. Pain complaints in depressed inpatients. Psychopathology 2000; 33: 307-309.
  25. Coulehan J.L., Schulberg H.C., Block M.R., Zettler-Segal M. Symptom patterns of depression in ambulatory medical and psychiatric patients. J Nerv Ment Dis 1988; 176: 284-288.
  26. Crowell M.D., Jones M.P., Harris L.A. et al. Antidepressants in the treatment of irritable bowel syndrome and visceral pain syndromes. Curr Opin Investig Drugs 2004; 5: 736-742.
  27. Curti C., Mingatto F.E., Polizello A.C. et al. Fluoxetine interacts with the li pid bilayer of the inner membrane in isolated rat brain mitochondria, inhibiting electron transport and F1F0-ATPase activity. Mol Cell Biochem 1999; 199: 103-109.
  28. Decsi L. Biochemical effects of drugs acting on the central nervous system. Chlorpromazine. In: E. Jucker (ed.). Progress in drug research. Basel und Stuttgart: Birkhauser Verlag 1965; 139-145.
  29. Domino E.F., Hudson R.D., Zografi G. Substituted phenothiazines: pharmacology and chemical structure. In: A. Burger (ed.). Drugs affecting the central nervous system. London: Edward Arnold 1968; 327-397.
  30. Dror N., Klein E., Karry R. et al. State-dependent alterations in mitochondrial complex I activity in platelets: a potential peri pheral marker for schizophrenia. Mol Psychiat 2002; 7: 995-1001.
  31. Easterday O.D., Featherstone R.M., Gottlieb J.S. et al. Blood glutathione, lactic acid and pyruvic acid relationshi ps in schizophrenia. AMA Arch Neurol Psychiat 1952; 68: 48-57.
  32. Fabre V., Hamon M. Mechanisms of action of antidepressants: new data from Escitalopram . Encephale 2003; 29: 259-265.
  33. Fadic R., Johns D.R. Clinical spectrum of mitochondrial diseases. Semin Neurol 1996; 16: 11-20.
  34. Fattal O., Budur K., Vaughan A.J., Franco K. Review of the literature on major mental disorders in adult patients with mitochondrial diseases. Psychosomatics 2006; 47:1-7.
  35. Fili pek P.A., Juranek J., Smith M. et al. Mitochondrial disfunction in autistic patients with 15q inverted duplication. Ann Neurol 2003; 53: 801-804.
  36. Fisher H. A new approach to emergency department therapy of migraine headache with intravenous haloperidol: a case series. J Emerg Med 1995; 13: 119-122.
  37. Fuxe K., Rivera A., Jacobsen K.X. et al. Dynamics of volume transmission in the brain. Focus on catecholamine and opioid peptide communication and the role of uncoupling protein 2. J Neural Transm 2005; 112: 65-76.
  38. Gardner A., Wibom R., Nennesmo I. et al. Mitochondrial function in neuroleptic-free and medicated schizophrenia . Eur Psychiat 2002; 17: Suppl 1: 183s.
  39. Gardner A., Johansson A., Wibom R. et al. Alterations of mitochondrial function and correlations with personality traits in selected major depressive disorder patients. J Affect Disord 2003; 76: 55-68.
  40. Gardner A., Pagani M., Wibom R. et al. Alterations of rcbf and mitochondrial dysfunction in major depressive disorder: a case report. Acta Psychiat Scand 2003; 107: 233-239.
  41. Gardner A. Mitochondrial dysfunction and alterations of brain HMPAO SPECT in depressive disorder - perspectives on origins of “somatization” . Karolinska Institutet, Neurotec Institution, Division of Psychiatry, Stockholm, 2004. http:// diss.kib.ki.se/2004/91-7349-903-X/thesis.pdf 42. Gardner A., Boles R.G. Is a “Mitochondrial Psychiatry” in the Future? A Review. Current Psychiat Rev 2005; 1: 255-271.
  42. Gentry K.M., Nimgaonkar V.L. Mitochondrial DNA variants in schizophrenia: association studies. Psychiat Genet 2000; 10: 27-31.
  43. Ghribi O., Herman M.M., Spaulding N.K., Savory J. Lithium inhibits aluminum-induced apoptosis in rabbit hippocampus, by preventing cytochrome c translocation, Bcl-2 decrease, Bax elevation and caspase3 activation. J Neurochem 2002; 82: 137-145.
  44. Goldstein J.M., Faraone S.V., Chen W.J. et al. Sex differences in the familial transmission of schizophrenia. Br J Psychiat 1990; 156: 819- 826.
  45. Graf W.D., Marin-Garcia J., Gao H.G. et al. Autism associated with the mitochondrial DNA G8363A transfer RNA(Lys) mutation. J Child Neurol 2000; 15: 357-361.
  46. Hardeland R., Coto-Montes A., Poeggeler B. Circadian rhythms, oxidative stress, and antioxidative defense mechanisms. Chronobiol Int 2003; 20: 921-962.
  47. Holt I.J., Harding A.E., Morgan-Hughes J.A. Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature 1988; 331: 717-719.
  48. Inagaki T., Ishino H., Seno H. et al. Psychiatric symptoms in a patient with diabetes mellitus associated with point mutation in mitochondrial DNA. Biol Psychiat 1997; 42: 1067-1069.
  49. Iwamoto K., Bundo M., Kato T. Altered expression of mitochondriarelated genes in postmortem brains of patients with bi polar disorder or schizophrenia, as revealed by large-scale DNA microarray analysis. Hum Mol Genet 2005; 14: 241-253.
  50. Karry R., Klein E., Ben Shachar D. Mitochondrial complex I subunits expression is altered in schizophrenia: a postmortem study. Biol Psychiat 2004; 55: 676-684.
  51. Kato T., Takahashi S., Shioiri T., Inubushi T. Alterations in brain phosphorous metabolism in bi polar disorder detected by in vivo 31P and 7Li magnetic resonance spectroscopy. J Affect Disord 1993; 27: 53-60.
  52. Kato T., Takahashi S., Shioiri T. et al. Reduction of brain phosphocreatine in bi polar II disorder detected by phosphorus-31 magnetic resonance spectroscopy. J Affect Disord 1994; 31: 125-133.
  53. Kato T., Takahashi Y. Deletion of leukocyte mitochondrial DNA in bi polar disorder. J Affect Disord 1996; 37: 67-73.
  54. Kato T., Stine O.C., McMahon F.J., Crowe R.R. Increased levels of a mitochondrial DNA deletion in the brain of patients with bi polar disorder. Biol Psychiat 1997a; 42: 871-875.
  55. Kato T., Winokur G., McMahon F.J. et al. Quantitative analysis of leukocyte mitochondrial DNA deletion in affective disorders. Biol Psychiat 1997; 42: 311-316.
  56. Kato T., Kato N. Mitochondrial dysfunction in bi polar disorder. Bipolar Disorder 2000; 2: 180-190.
  57. Kato T., Kunugi H., Nanko S., Kato N. Association of bi polar disorder with the 5178 polymorphism in mitochondrial DNA. Am J Med Genet 2000; 96: 182-186.
  58. Kato T. The other, forgotten genome: mitochondrial DNA and mental disorders. Mol Psychiat 2001; 6: 625-633.
  59. Kato T., Kunugi H., Nanko S., Kato N. Mitochondrial DNA polymorphisms in bi polar disorder. J Affect Disord 2001; 52: 151-164.
  60. Katon W., Kleinman A., Rosen G. Depression and somatization: a review. Am J Med 1982; 72: 127-135.
  61. Kegeles L.S., Humaran T.J., Mann J.J. In vivo neurochemistry of the brain in schizophrenia as revealed by magnetic resonance spectroscopy. Biol Psychiat 1998; 44: 382-398.
  62. Kety S.S. Biochemical theories of schizophrenia. Int J Psychiat 1965; 51: 409-446.
  63. Kiejna A., DiMauro S., Adamowski T. et al. Psychiatric symptoms in a patient with the clinical features of MELAS. Med Sci Monit 2002; 8: CS66-CS72.
  64. Kirk R., Furlong RA., Amos W. et al. Mitochondrial genetic analyses suggest selection against maternal lineages in bi polar affective disorder. Am J Hum Genet 1999; 65: 508-518.
  65. Koller H., Kornischka J., Neuen-Jacob E. et al. Persistent organic personality change as rare psychiatric manifestation of MELAS syndrome. J Neurol 2003; 250: 1501-1502.
  66. Kolomeets N.S., Uranova N.A. Synaptic contacts in schizophrenia: studies using immunocytochemical identification of dopaminergic neurons. Neurosci Behav Physiol 1999; 29: 217-221.
  67. Konradi C., Eaton M., MacDonald M.L. et al. Molecular evidence for mitochondrial dysfunction in bi polar disorder. Arch Gen Psychiat 2004; 61: 300-308.
  68. Kung L., Roberts R.C. Mitochondrial pathology in human schizophrenic striatum: a postmortem ultrastructural study. Synapse 1999; 31: 67-75.
  69. Lenaerts M.E. Cluster headache and cluster variants. Curr Treat Options Neurol 2003; 5: 455-466.
  70. Lestienne P., Ponsot G. Kearns-Sayre syndrome with muscle mitochondrial DNA deletion. Lancet 1988; 1: 885.
  71. Lindholm E., Cavelier L., Howell W.M. et al. Mitochondrial sequence variants in patients with schizophrenia. Eur J Hum Genet 1997; 5: 406-412.
  72. Lloyd D., Rossi E.L. Biological rhythms as organization and information. Biol Rev Camb Philos Soc 1993; 68: 563-577.
  73. Luft R. The development of mitochondrial medicine. Proc Natl Acad Sci USA 1994; 8731-8738.
  74. Luhrs W., Bacigalupo G., Kadenbach B., Heise E. Der einfluss von chlorpromazin auf die oxydative phosphoryliering von tumormitochondrien . Experientia 1959; 15: 376-377.
  75. Marchbanks R.M., Mulcrone J., Whatley S.A. Aspects of oxidative metabolism in schizophrenia. Br J Psychiat 1995; 167: 293-298.
  76. Marchbanks R.M., Ryan M., Day I.N. et al. A mitochondrial DNA sequence variant associated with schizophrenia and oxidative stress. Schizophr Res 2003; 65: 33-38.
  77. Matsumoto J., Ogawa H., Maeyama R. et al. Successful treatment by direct hemoperfusion of coma possibly resulting from mitochondrial dysfunction in acute valproate intoxication. Epilepsia 1997; 38: 950- 953.
  78. Maurer I., Zierz S., Moller H. Evidence for a mitochondrial oxidative phosphorylation defect in brains from patients with schizophrenia. Schizophr Res 2001; 48: 125-136.
  79. McMahon F.J., Chen Y.S., Patel S. et al. Mitochondrial DNA sequence diversity in bi polar affective disorder. Am J Psychiat 2000; 157: 1058-1064.
  80. Miyaoka H., Suzuki Y., Taniyama M. et al. Mental disorders in diabetic patients with mitochondrial transfer RNA(Leu) (UUR) mutation at position 3243. Biol Psychiat 1997; 42: 524-526.
  81. Moldin S.O., Scheftner W.A., Rice J.P. et al. Association between major depressive disorder and physical illness. Psychol Med 1993; 23: 755- 761.
  82. Molnar G., Fava G.A., Zielezny M. et al. Measurement of subclinical changes during lithium prophylaxis: a longitudinal study. Psychopathology 1987; 20: 155-161.
  83. Moore C.M., Christensen J.D., Lafer B. et al. Lower levels of nucleoside triphosphate in the basal ganglia of depressed subjects: a phosphorous- 31 magnetic resonance spectroscopy study. Am J Psychiat 1997; 154: 116-118.
  84. Mulcrone J., Whatley S., Ferrier I., Marchbanks R.M. A study of altered gene expression in frontal cortex from schizophrenic patients using differential screening. Schizophr Res 1995; 14: 203-213.
  85. Munakata K., Tanaka M., Mori K. et al. Mitochondrial DNA 3644T>C mutation associated with bi polar disorder. Genomics 2004; 84: 1041- 1050.
  86. Murashita J., Kato T., Shioiri T. et al. Altered brain energy metabolism in lithium-resistant bi polar disorder detected by photic stimulated 31P-MR spectroscopy. Psychol Med 2000; 30: 107-115.
  87. Newman-Toker D.E., Horton J.C., Lessell S. Recurrent visual loss in Leber hereditary optic neuropathy. Arch Ophthalmol 2003; 121: 288-291.
  88. Norby S., Lestienne P., Nelson I. et al. Juvenile Kearns-Sayre syndrome initially misdiagnosed as a psychosomatic disorder. J Med Genet 1994; 31: 45-50.
  89. Odawara M., Arinami T., Tachi Y. et al. Absence of association between a mitochondrial DNA mutation at nucleotide position 3243 and schizophrenia in Japanese. Hum Genet 1998; 102: 708-709.
  90. Odawara M. Mitochondrial gene abnormalities as a cause of psychiatric diseases. Nucleic Acids Res 2002; Suppl 2: 253-254.
  91. Oexle K., Zwirner A. Advanced telomere shortening in respiratory chain disorders. Hum Mol Genet 1997; 6: 905-908.
  92. Onishi H., Kawanishi C., Iwasawa T. et al. Depressive disorder due to mitochondrial transfer RNALeu(UUR) mutation. Biol Psychiat 1997; 41: 1137-1139.
  93. Orsulak P.J., Waller D. Antidepressant drugs: additional clinical uses. J Fam Pract 1989; 28: 209-216.
  94. Prayson R.A., Wang N. Mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes (MELAS) syndrome: an autopsy report. Arch Pathol Lab Med 1998; 122: 978-981.
  95. Prince J.A., Blennow K., Gottfries C.G. et al. Mitochondrial function is differentially altered in the basal ganglia of chronic schizophrenics. Neuropsychopharmacology 1999; 21: 372-379.
  96. Prince J.A., Harro J., Blennow K. et al. Putamen mitochondrial energy metabolism is highly correlated to emotional and intellectual impairment in schizophrenics. Neuropsychopharmacology 2000; 22: 284-292.
  97. Rajala U., Keinanen-Kiukaanniemi S., Uusimaki A., Kivela S.L. Musculoskeletal pains and depression in a middle-aged Finnish population. Pain 1995; 61: 451-457.
  98. Rango M., Bozzali M., Prelle A. et al. Brain activation in normal subjects and in patients affected by mitochondrial disease without clinical central nervous system involvement: a phosphorus magnetic resonance spectroscopy study. J Cereb Blood Flow Metab 2001; 21: 85-91.
  99. Rathman S.C., Blanchard R.K., Badinga L. et al. Dietary carbamazepine administration decreases liver pyruvate carboxylase activity and biotinylation by decreasing protein and mRNA expression in rats. J Nutr 2003; 133: 2119-2124.
  100. Ritsner M. The attribution of somatization in schizophrenia patients: a naturalistic follow-up study. J Clin Psychiat 2003; 64: 1370-1378.
  101. Rumbach L., Mutet C., Cremel G. et al. Effects of sodium valproate on mitochondrial membranes: electron paramagnetic resonance and transmembrane protein movement studies. Mol Pharmacol 1986; 30: 270-273.
  102. Saijo T., Naito E., Ito M. et al. Therapeutic effects of sodium dichloroacetate on visual and auditory hallucinations in a patient with MELAS. Neuropediatrics 1991; 22: 166-167.
  103. Scheffler L.E. A century of mitochondrial research: achievements and perspectives. Mitochondrion 2001; 1: 1: 3-31.
  104. Seeman P. Tardive dyskinesia, dopamine receptors, and neuroleptic damage to cell membranes. J Clin Psychopharmacol 1988; 8: 4 Suppl: 3S-9S.
  105. Shanske A.L., Shanske S., Silvestri G. et al. MELAS point mutation with unusual clinical presentation. Neuromuscul Disord 1993; 3: 191-193.
  106. Shapira A.H.V. Mitochondrial disorders. Biochim Biophys Acta 1999; 1410: 2: 99-102.
  107. Shimizu A., Kurachi M., Yamaguchi N. et al. Morbidity risk of schizophrenia to parents and siblings of schizophrenic patients. Jpn J Psychiat Neurol 1987; 41: 65-70.
  108. Shinkai T., Nakashima M., Ohmori O. et al. Coenzyme Q10 improves psychiatric symptoms in adult-onset mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes: a case report. Aust N Z J Psychiat 2000; 34: 1034-1035.
  109. Shoffner J.M., Bialer M.G., Pavlakis S.G. et al. Mitochondrial encephalomyopathy associated with a single nucleotide pair deletion in the mitochondrial tRNALeu(UUR) gene. Neurology 1995; 45: 286-292.
  110. Shoffner J.M., Wallace D.C. Oxidative phosphorylation diseases. In: C.R. Scriver, A.L. Beaudet, W.S. Sly, D. Valle (eds.). The metabolic and molecular bases of inherited disease. 7th edition, McGraw-Hill, New York 1995; 1535-1629.
  111. Sillanpaa M. Carbamazepine, pharmacological and clinical uses. Acta Neurol Scand 1981; 64: Suppl 88: 11-13.
  112. Souza M.E., Polizello A.C., Uyemura S.A. et al. Effect of fluoxetine on rat liver mitochondria. Biochem Pharmacol 1994; 48: 535-541.
  113. Spellberg B., Carroll RM., Robinson E., Brass E. mtDNA disease in the primary care setting. Arch Intern Med 2001; 161: 2497-2500.
  114. Spina E., Perugi G. Antiepileptic drugs: indications other than epilepsy. Epileptic Disord 2004; 6: 57-75.
  115. Spinazzola A., Carrara F., Mora M., Zeviani M. Mitochondrial myopathy and ophthalmoplegia in a sporadic patient with the 5698G>A mitochondrial DNA mutation. Neuromuscul Disord 2004; 14: 815- 817.
  116. Starkov A.A., Simonyan R.A., Dedukhova V.I. et al. Regulation of the energy coupling in mitochondria by some steroid and thyroid hormones. Biochim Biophys Acta 1997; 1318: 173-183.
  117. Stine O.C., Luu S.U., Zito M. The possible association between affective disorder and partially deleted mitochondrial DNA. Biol Psychiat 1993; 33: 141-142.
  118. Stone K.J., Viera A.J., Parman C.L. Off-label applications for SSRIs. Am Fam Physician 2003; 68: 498-504.
  119. Sugimoto T., Nishida N., Yasuhara A. et al. Reye-like syndrome associated with valproic acid. Brain Dev 1983; 5: 334-347.
  120. Suzuki T., Koizumi J., Shiraishi H. et al. Mitochondrial encephalomyopathy (MELAS) with mental disorder. CT, MRI and SPECT findings. Neuroradiology 1990; 32:1: 74-76.
  121. Suzuki Y., Taniyama M., Muramatsu T. et al. Diabetes mellitus associated with 3243 mitochondrial tRNA(Leu(UUR)) mutation: clinical features and coenzyme Q10 treatment. Mol Aspects Med 1997; Suppl 18: S181-188.
  122. Swerdlow R.H., Binder D., Parker W.D. Risk factors for schizophrenia. N Engl J Med 1999; 341: 371-372.
  123. Thomeer E.C., Verhoeven W.M., van de Vlasakker C.J., Klompenhouwer J.L. Psychiatric symptoms in MELAS; a case report. J Neurol Neurosurg Psychiat 1998; 64: 692-693.
  124. Volz H.P., Rzanny R., Riehemann S. et al. 31P magnetic resonance spectroscopy in the frontal lobe of major depressed patients. Eur Arch Psychiat Clin Neurosci 1998; 248: 289-295.
  125. Wallace D.C., Singh G., Lott M.T. et al. Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy. Science 1988; 242: 1427-1430.
  126. Wang Q., Ito M., Adams K. et al. Mitochondrial DNA control region sequence variation in migraine headache and cyclic vomiting syndrome. Am J Med Genet 2004; 131A: 50-58.
  127. Washizuka S., Kakiuchi C., Mori K. et al. Association of mitochondrial complex I subunit gene NDUFV2 at 18p11 with bi polar disorder. Am J Med Genet 2003; 120B: 72-78.
  128. Whatley S.A., Curti D., Marchbanks R.M. Mitochondrial involvement in schizophrenia and other functional psychosis. Neurochem Res 1996; 21: 995-1004.
  129. Whatley S.A., Curti D., Das Gupta F. et al. Superoxide, neuroleptics and the ubiquinone and cytochrome b5 reductases in brain and lymphocytes from normals and schizophrenic patients. Mol Psychiat 1998; 3: 227-237.
  130. Wolyniec P.S., Pulver A.E., McGrath J.A., Tam D. Schizophrenia gender and familial risk. J Psychiat Res 1992; 26: 17-27.
  131. Yovell Y., Sakeim H.A., Epstein D.G. et al. Hearing loss and asymmetry in major depression. J Neuropsychiat 1995; 7: 82-89.
  132. Zeviani M., Moraes C.T., DiMauro S. et al. Deletions of mitochondrial DNA in Kearns-Seyre syndrome. Neurology 1988; 38: 1339-1346.

Митохондриальные болезни (цитопатии) - гетерогенная группа системных расстройств, обусловленных мутациями митохондриального или ядерного генома, которые поражают преимущественно мышечную, нервную и нервно-мышечную системы .

ВВЕДЕНИЕ

В настоящее время митохондриология выделилась в самостоятельное научное направление. Более того, открытие в последние годы ведущей роли митохондрий в чувствительности к лекарствам, их ключевой ролью в старении, апоптозе и нейродегенеративных расстройствах привело к созданию митохондриальной медицины. Важным ее разделом являются болезни, связанные с нарушением функции митохондрий, - митохондриальные цитопатии.

Большинство исследователей признают, что митохондрии в клетках животных являются отдаленными потомками архибактерий , которые на заре жизни внедрились в первобытные эукариотические клетки и постепенно превратились в эндосимбионтов. Митохондрии, являющиеся потомками свободно живущих эубактерий, сохранили только минимальные остатки своего генома в эволюционном процессе эндосимбиоза. Бульшая часть генома была или передана ядру эукариотического хозяина, или утрачена, так как животные клетки предоставляют митохондриям «и стол, и дом», используя в свою очередь энергию, запасаемую в продукте жизнедеятельности митохондрий в виде АТФ. Фрагменты из кодирующей и некодирующей областей митДНК находятся как ископаемые остатки в ядерном геноме различных эукариотов.

Концепция симбиоза принимается как наиболее вероятная гипотеза, в пользу которой, помимо второстепенных, свидетельствуют два фундаментальных факта :
1 - митохондрии единственные органеллы, имеющие собственный геном
2 - генетический код митохондриальной (митДНК) и ядерной (яДНК) ДНК различен (данное обстоятельство является веским аргументом против существовавшего ранее предположения о происхождении митохондрий в результате компартментализации части ядерного генома)

В процессе симбиоза митохондрии утратили значительную часть самостоятельности и передали бульшую часть своего генома ядрам клеток. В результате их жизнь и функционирование только в малой степени обеспечиваются собственной ДНК. Бульшая часть митохондриальных белков кодируется в ядрах клеток и доставляется в митохондрии из цитоплазмы. В постмитотических клетках, таких как мышечные волокна, нейроны и кардиомиоциты, митохондрии имеют ограниченный срок жизни (несколько недель). В нормальных условиях их новообразование требует координации между митохондриальной ДНК, кодирующей 13 из 80 белковых субъединиц респираторной цепи, 2 белковых субъединицы мРНК и 22 митохондриальных тРНК (всего 37 генов), и ядерным геномом, кодирующим более 99% митохондриальных белков.

Главные функции митохондрий :
продукция энергии для клеток в виде АТФ в результате окислительного фосфорилирования различных субстратов (дыхательная цепь состоит из пяти энзимных комплексов)
b-окисление жирных кислот
цикл трикарбоновых кислот
выполняют роль во внутриклеточной сигнализации, апоптозе, промежуточном метаболизме, а также в метаболизме аминокислот, липидов, холестерина, стероидов и нуклеотидов

МИТОХОНДРИАЛЬНАЯ ПАТОЛОГИЯ

Наследование мутаций в митохондриальном геноме носит особый характер. Если гены, заключенные в ядерной ДНК, дети получают поровну от обоих родителей, то митохондриальные гены передаются потомкам только от матери . Это связано с тем, что всю цитоплазму с содержащимися в ней митохондриями потомки получают вместе с яйцеклеткой, в то время как в сперматозоидах цитоплазма практически отсутствует. По этой причине женщина с митохондриальным заболеванием передаёт его всем своим детям, а больной мужчина - нет.

В нормальных условиях все митохондрии в клетке имеют одинаковую копию ДНК - гомоплазмия . Однако в митохондриальном геноме могут происходить мутации и вследствие параллельного существования мутированной и немутированной митДНК возникает гетероплазмия .

К настоящему времени известно более 200 заболеваний, вызванных мутацией митДНК.

Заболевания, вызванные мутацией митДНК подразделяются на две группы :
1 - точечные мутации белков, тРНК, рРНК в кодирующих областях, которые часто наследуются по линии матери
2 - структурные перестановки - дупликации и делеции, которые обычно являются спорадическими

Ядерные мутации также могут приводить к нарушению функции митохондрий (в первую очередь нарушению окислительного фосфорилирования) вследствие того, что митДНК кодирует только 13 полипептидных субъединиц дыхательной цепи из 80 необходимых. Помимо этого, энзимы и другие факторы, необходимые для транскрипции, репликации и трансляции, также поступают в митохондрии из цитоплазмы клетки, а не синтезируются непосредственно в митохондрии.

Поскольку знания о ядерном геноме на протяжении последних лет значительно расширились, идентифицируются все больше дефектов митохондрий, кодируемых ядром; различают :
мутации структурных белков и тРНКаз, нарушающие функционирование респираторной цепи
мутации, которые нарушают интергеномное взаимодействие между ядром и митохондриями и тем самым вызывают вторичные изменения митДНК

К настоящему времени описано много вариантов нарушения процесса окислительного фосфорилирования в митохондриях человека. Дефект может быть связан с одним или несколькими энзимными комплексами. В одной клетке, как было сказано ранее, могут сосущестовать митохондрии нормальные и с нарушенной функцией (гетероплазмия). За счет первых клетка может функционировать какое-то время. Если же продукция энергии в ней падает ниже определенного порога, происходит компенсаторная пролиферация всех митохондрий, включая дефектные. Естественно, при этом в худшем положении оказываются клетки, которые потребляют много энергии: мышечные волокна, кардиомиоциты, нейроны.

Из-за нарушения функционирования митохондрии постоянно продуцируют свободные радикалы на уровне 1-2% поглощенного кислорода. Количество продукции радикалов зависит от мембранного потенциала митохондрий, на изменения которого влияет состояние АТФ-зависимых калиевых каналов митохондрий. Открытие этих каналов влечет за собой возрастание образования свободных радикалов. Свободные радикалы играют огромную роль в старении митохондрий и, следовательно, в старении эукариотических клеток. Агрессивная среда вокруг митохондрий при значительном увеличении их количества и нарушении функции может быть одним из факторов развития деструктивных изменений в клетках. Изменения мембранного потенциала митохондрий, а также образование свободных радикалов в свою очередь оказывают повреждающее влияние на другие белки митохондриальных мембран. Митохондриальная ДНК содержит очень небольшую некодирующую область и хорошо доступна для радикалов, генерируемых респираторной цепочкой в ходе аэробного образования АТФ, а способность митохондрий к восстановлению мала. Поэтому уровень повреждения митДНК, возрастающий с возрастом, влияет на степень гетероплазмии. Принято считать, что 10% митохондрий с измененной ДНК не оказывает влияния на фенотип. Вместе с тем высокая скорость их обновления и короткая жизнь создают своеобразный способ восстановления путем замещения для коррекции повреждения свободными радикалами.

Нарушение функции митохондрий сопровождается выраженными изменениями их структуры - эти изменения наиболее демонстративны в скелетных мышцах. В нормальных условиях митохондрии в скелетных мышцах, располагающиеся между миофибриллами, имеют удлиненную форму, электронно-плотный матрикс и относительно редкие пластинчатые кристы. Они могут также образовывать небольшие субсарколеммальные скопления. При электронно-микроскопическом исследовании мышц больных с митохондриальной цитопатией обнаруживают изменение величины, формы и внутренней структуры в их митохондриальном аппарате. Иногда изменения структуры заходят настолько далеко, что такие образования можно с трудом идентифицировать как митохондрии. Наиболее характерные изменения митохондрий обусловлены удлинением крист . Иногда это приводит к удлинению самих митохондрий (лентовидные), в других случаях - к спиральному закручиванию крист. Изменения претерпевают и сами кристы, становясь из пластинчатых трубчатыми. Все это можно рассматривать как попытку скомпенсировать недостаточную эффективность функции дыхательной цепочки в митохондриях. Другой распространенной особенностью дефектных структур является наличие в них паракристаллических включений. Наконец, можно проследить эволюцию митохондрий от более простых к более сложным.

КЛИНИЧЕСКИЕ ПРОЯВЛЕНИЯ МИТОХОНДРИАЛЬНЫХ БОЛЕЗНЕЙ (цитопатий)

В случаях, когда человек с мутацией в митохондриальном гене несет смесь нормальной и мутантной ДНК - мутации поначалу могут вообще не иметь внешних проявлений. Нормальные митохондрии до поры до времени обеспечивают клетки энергией, компенсируя недостаточность функции митохондрий с дефектами. На практике это проявляется более или менее длительным бессимптомным периодом при многих митохондриальных заболеваниях. Однако рано или поздно наступает момент, когда дефектные формы накапливаются в количестве, достаточном для проявления патологических признаков. Возраст манифестации заболевания варьирует у разных больных. Раннее начало заболевания приводит к более тяжелому течению и неутешительному прогнозу.

Митохондриальные мутации проявляются широким рядом клинических симптомов. Эти мутации способны вовлекать тРНК, рРНК или структурные гены и могут выражаться биохимически как дефекты всей электронно-транспортной цепи или как дефекты отдельных энзимов. Митохондриальные цитопатии поражают множественные органные системы, но, как указывалось, предпочтительно поражаются органы с высокой метаболической активностью - мозг и скелетные мышцы. Таким образом, скелетные мышцы являются тканью выбора для выявления митохондриальных болезней.

Характерные признаки митохондриальных цитопатий :
скелетные мышцы : низкая толерантность к физической нагрузке, гипотония, проксимальная миопатия, включающая фациальные и фарингеальные мышцы, офтальмопарез, птоз
сердце : нарушения сердечного ритма, гипертрофическая миокардиопатия
центральная нервная система : атрофия зрительного нерва, пигментная ретинопатия, миоклонус, деменция, инсультоподобные эпизоды, расстройства психики
периферическая нервная система : аксональная нейропатия, нарушения двигательной функции гастроинтестинального тракта
эндокринная система : диабет, гипопаратиреоидизм, нарушение экзокринной функции панкреас, низкий рост

Клинический полиморфизм митохондриальных цитопатий (некоторые группы наиболее часто встречающихся комбинаций симптомов) клиницисты объединили в синдромы - все они являются сокращениями английских названий симптомов (следует иметь в виду, что симптомы при разных синдромах могут перекрещиваться) :
MELAS - Mitochondrial Myopathy, Encephalopathy, Lactic Acidosis and Stroke-like episodes - митохондриальная миопатия, энцефалопатия, лактатный ацидоз и инсультоподобные эпизоды
CPEO/PEO - External Ophthalmoplegia, Ophthalmoplegia plus syndrome - офтальмоплегия, связанная с поражением глазодвигательных мышц, офтальмоплегия плюс синдром
KSS - Kearns-Sayre Syndrome - retinopathy, proximal muscle weakness, cardiac arrythmia and ataxia - ретинопатия, слабость проксимальных мышц, аритмия и атаксия
MERRF - Myoclonic Epilepsy associated with Ragged Red Fibres - миоклоническая эпилепсия с обнаружением RRF (мышечные волокна с измененными митохондриями - так называемые ragged-red волокна - RRF)
LHON - Leber Hereditary Optic Neuropathy - врожденная нейропатия глазного нерва
Leigh syndrome - infantile subacute necrotizing encephalopathy - инфантильная подострая некротизирующая энцефалопатия
NAPR - Neuropathy, Ataxia and Pigmentary Retinopathy - нейропатия, атаксия и пигментная ретинопатия

Наиболее обычными при митохондриальных цитопатиях являются неврологические симптомы , поскольку, как указывалось выше, ткани, в наибольшей степени зависящие от окислительного фосфорилирования, составляют основу патогенеза этих страданий.

Митохондриальные цитопатии могут быть спорадическими или наследственными , при этом они наследуются, как и гемофилия, по линии матери, только в отличие от гемофилии поражают лиц обоего пола. Применение некоторых фармакологических средств, например зидовудина, также может индуцировать проксимальную миопатию и появление RRF. С возрастом в митДНК накапливаются мутации, в результате чего у пожилых людей также могут встречаться RRF.

!!! митДНК накапливает мутации более чем в десять раз быстрее по сравнению с ядерным геномом - это связано с тем, что митДНК лишена защитных гистонов и, как уже упоминалось, ее окружение чрезвычайно богато реактивными видами кислорода, являющимися побочным продуктом метаболических процессов, протекающих в митохондриях; кроме того, восстановительные механизмы митДНК малоэффективны по сравнению с ядерной

Окончательный диагноз митохондриальных цитоатий ставится исходя из результатов биохимических и молекулярных исследований, что доступно в специально оборудованных центрах.

Существует ряд рутинных клинических методов исследования, которые можно использовать при подозрении на митохондриальную цитопатию :
лактатный ацидоз является практически постоянным спутником митохондриальных болезней (только этот признак является недостаточным для постановки диагноза, так как он может выявляться и при других патологических состояниях; в этом отношении может быть полезным измерение уровня лактата в венозной крови после умеренной физической нагрузки, например на велоэргометре)
ЭМГ-исследование - само по себе данное исследование также не могут быть маркером митохондриальной цитопатии; вместе с тем нормальная или близкая к нормальной ЭМГ у пациентов с выраженной мышечной слабостью может быть подозрительной в отношении митохондриальной патологии.
ЭЭГ – данные ЭЭГ не является достаточно специфическими
биопсия скелетных мышц - является наиболее информативным методом при постановке диагноза митохондриальной цитопатии - помимо обнаружения RRF при трехцветной окраске по Гомори, полезными являются другие гистохимические и иммунологические исследования: окраска на цитохромс-оксидазу и сукцинатдегидрогеназу, иммунногистохимические исследования с применением антител к отдельным субъединицам дыхательного комплекса; мышечная ткань удобна для биохимического исследования респираторной цепочки, а также как материал для генетического исследования
электронно-микроскопическое исследование скелетных мышц - дает прекрасные результаты, поэтому данный метод надо использовать, если имеется такая возможность

Что касается терапии митохондриальных цитопатий , то речь может идти пока только о симптоматической.

Лечение митохондриальных болезней проводится обычно по двум основным направлениям :
повышение эффективности энергетического обмена в тканях (тиамин, рибофлавин, никотинамид, коэнзим Q10, витамин С, цитохром С и др.)
предупреждение повреждения митохондриальных мембран свободными радикалами с помощью антиоксидантов (витамин Е, a-липоевая кислота) и мембранопротекторов

Лечение включает также альтернативные источники энергии (креатин моногидрат), стратегию снижения уровня лактата (дихлорацетат) и физические упражнения.

Разработка методов генной терапии и вообще патогенетических методов лечения еще находится в стадии экспериментов. Одним из наиболее перспективных направлений генной терапии является попытка изменить уровень гетероплазмии путем или селективной ингибиции репликации митохондрий, или разрушения мутантной ДНК. Такой подход базируется на факте, что требуется большое число копий мутантной митДНК, чтобы эффект мутации стал фенотипически явным. Аргументируется, что при эффективном уменьшении популяции мутантной ДНК увеличивается количество нормальной и это приводит в результате к нормализации фенотипа.