Как убрать корень из знаменателя. Освобождение от алгебраической иррациональности в знаменателе дроби

Как убрать корень из знаменателя. Освобождение от алгебраической иррациональности в знаменателе дроби
Как убрать корень из знаменателя. Освобождение от алгебраической иррациональности в знаменателе дроби

Токарев Кирилл

Работа помогает научиться извлекать квадратный корень из любого числа без применения калькулятора и таблицы квадратов и освобождать знаменатель дроби от иррациональности.

Освобождение от иррациональности знаменателя дроби

Суть метода состоит в умножении и делении дроби на такое выражение, которое позволит исключить иррациональность (квадратные и кубические корни) из знаменателя и сделает его проще. После этого дроби проще привести к общему знаменателю и окончательно упростить исходное выражение.

Извлечение квадратного корня с приближением до заданного разряда.

Пусть нужно извлечь квадратный корень из натурального числа 17358122, причем известно, что корень извлекается. Чтобы найти результат, иногда удобно воспользоваться описанным в работе правилом.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Радикал. Освобождение от иррациональности знаменателя дроби. Извлечение квадратного корня с заданной степенью точности. Ученика 9Б класса МОУ СОШ №7 г. Сальска Токарева Кирилла

ОСНОВОПОЛАГАЮЩИЙ ВОПРОС: Можно ли извлечь квадратный корень из любого числа с заданной степенью точности, не имея калькулятора и таблицы квадратов?

ЦЕЛИ И ЗАДАЧИ: Рассмотреть случаи решения выражений с радикалами, не изучаемые в школьном курсе математики, но необходимые на ЕГЭ.

ИСТОРИЯ КОРНЯ Знак корня происходит из строчной латинской буквы r (начальной в латинском слове radix – корень), сросшейся с надстрочной чертой. В старину надчёркивание выражения использовалось вместо нынешнего заключения в скобки, так что есть всего лишь видоизменённый древний способ записи чего-то вроде. Впервые такое обозначение использовал немецкий математик Томас Рудольф в 1525 году.

ОСВОБОЖДЕНИЕ ОТ ИРРАЦИОНАЛЬНОСТИ ЗНАМЕНАТЕЛЯ ДРОБИ Суть метода состоит в умножении и делении дроби на такое выражение, которое позволит исключить иррациональность (квадратные и кубические корни) из знаменателя и сделает его проще. После этого дроби проще привести к общему знаменателю и окончательно упростить исходное выражение. АЛГОРИТМ ОСВОБОЖДЕНИЯ ОТ ИРРАЦИОНАЛЬНОСТИ В ЗНАМЕНАТЕЛЕ ДРОБИ: 1. Разложить знаменатель дроби на множители. 2. Если знаменатель имеет вид или содержит множитель, то числитель и знаменатель следует умножить на. Если знаменатель имеет вид или или содержит множитель такого вида, то числитель и знаменатель дроби следует умножить соответственно на или на. Числа и называют сопряжёнными. 3. Преобразовать числитель и знаменатель дроби, если возможно, то сократить полученную дробь.

а) б) в) г) = - Освобождение от иррациональности в знаменателе дроби.

ИЗВЛЕЧЕНИЕ КВАДРАТНОГО КОРНЯ С ПРИБЛИЖЕНИЕМ ДО ЗАДАННОГО РАЗРЯДА. 1) -1 100 96 400 281 11900 11296 24 4 281 1 2824 4 16 135 81 5481 4956 52522 49956 81 1 826 6 8326 6 2) Древневавилонский способ: Пример: Найти. Для решения задачи данное число разлагается на сумму двух слагаемых: 1700 = 1600 + 100 = 40 2 + 100, первое из которых является полным квадратом. Затем применяем формулу. Алгебраический способ:

ИЗВЛЕЧЕНИЕ КВАДРАТНОГО КОРНЯ С ПРИБЛИЖЕНИЕМ ДО ЗАДАННОГО РАЗРЯДА. , 4 16 8 . 1 1 1 3 5 1 8 1 5 4 8 1 8 2 + 66 4 9 5 6 6 5 2 5 2 2 + 8 3 2 66 4 9 9 5 6 6 + 8 3 3 2 33 2 5 6 6 0 0 ,3

Список литературы 1. Сборник задач по математике для поступающих в вузы под редакцией М.И.Сканави. В. К.Егерев, Б.А.Кордемский, В. В. Зайцев, “ ОНИКС 21 век ” , 2003г. 2. Алгебра и элементарные функции. Р. А. Калнин, “ Наука ” , 1973г. 3. Математика. Справочные материалы. В. А. Гусев, А. Г. Мордкович, издательство “ Просвещение ” , 1990г. 4. Школьникам о математике и математиках. Составитель М.М.Лиман, Просвещение, 1981г.

Данни Перич Кампана

Еще одна интересная книга для школьников, интересующихся , к сожалению, не переведенная на русский язык, — это книга “Математические приключения Даниэля” (Las Aventuras Matemáticas de Daniel) чилийского учителя математики Данни Перича Кампаны (Danny Perich Campana), человека весьма неординарного и интересного. Он не только учит ребятишек, но и пишет песни, выкладывает в Интеренет различные обучающие материалы по математике. Их можно найти на youtube, и на сайте http://www.sectormatematica.cl/ (разумеется, все материалы на испанском языке).

Здесь выкладываю одну главу из книги Данни Перича. Мне она показалась довольно интересной и полезной для школьников. Чтобы было понятно, о чем идет речь, скажу, что Даниэль и Камила работают в школе, они учителя.

Тайна избавления от иррациональности

— Камила, у меня сейчас возникает много проблем, когда пытаюсь объяснить, для чего применяется то, что проходим на уроке, — сказал Даниэль.

— Не очень понимаю, о чем ты говоришь.

— Я о том, что есть во всех школьных учебниках и даже книгах университетского уровня. Меня все равно не оставляют сомнения: зачем нужно избавляться от иррациональности в знаменателе? И я терпеть не могу рассказывать то, чего не понимаю уже столько времени, — жаловался Даниэль.

— Я тоже не знаю, откуда это идет и зачем это нужно, но должно быть какое-то логическое объяснение этому.

— Как-то я прочитал в одном научном журнале, что избавление от иррациональности в знаменателе позволяет получить результат с большей точностью, но никогда больше не встречал этого и не уверен, что это так и есть.

— А почему бы нам это не проверить? — спросила Камила.

— Ты права, — согласился Даниэль. — Вместо того, чтобы жаловаться, нужно попытаться самим сделать выводы. Тогда помоги мне…

— Конечно, теперь мне самой это интересно.

— Мы должны взять какие-нибудь выражения и избавиться от иррациональности в знаменателе, потом заменить корень на его значение и найти результат выражения до избавления от иррациональности в знаменателе и после и посмотреть, изменится ли что-нибудь.

— Разумеется, — согласилась Камила. — Давай так и сделаем.

— Возьмем, например, выражение , — сказал Даниэль и взял лист бумаги, чтобы записывать происходящее. — Умножим числитель и знаменатель на и получим .

— Будет правильно и может помочь нам сделать выводы, если мы рассмотрим другие иррациональные выражения, равные данному, — предложила Камила.

— Согласен, — сказал Даниэль, — я поделю числитель и знаменатель на , а ты домножь их на .

— У меня получилось . А у тебя?

— У меня , — ответил Даниэль. — Теперь вычислим исходное выражение и полученные, заменяя на его значение со всеми десятичными знаками, которые дает калькулятор. Получим:

— Не вижу ничего особенного, — сказала Камила. — Я ожидала какого-либо различия, которое оправдало бы избавление от иррациональности.

— Как я тебе уже говорил, я когда-то читал об этом в связи с приближением. Что ты скажешь, если мы заменим на менее точное число, например, на ?

— Пробуем и смотрим, что получилось.

При изучении преобразований иррационального выражения очень важным является вопрос о том, как освободиться от иррациональности в знаменателе дроби. Целью этой статьи является объяснение этого действия на конкретных примерах задач. В первом пункте мы рассмотрим основные правила данного преобразования, а во втором – характерные примеры с подробными пояснениями.

Понятие освобождения от иррациональности в знаменателе

Начнем с пояснения, в чем вообще заключается смысл такого преобразования. Для этого вспомним следующие положения.

Об иррациональности в знаменателе дроби можно говорить в том случае, если там присутствует радикал, он же знак корня. Числа, которые записаны при помощи такого знака, часто относятся к числу иррациональных. Примерами могут быть 1 2 , - 2 x + 3 , x + y x - 2 · x · y + 1 , 11 7 - 5 . К дробям с иррациональными знаменателями также относятся те, что имеют там знаки корней различной степени (квадратный, кубический и т.д.), например, 3 4 3 , 1 x + x · y 4 + y . Избавляться от иррациональности следует для упрощения выражения и облегчения дальнейших вычислений. Сформулируем основное определение:

Определение 1

Освободиться от иррациональности в знаменателе дроби – значит преобразовать ее, заменив на тождественно равную дробь, в знаменателе которой не содержится корней и степеней.

Такое действие может называться освобождением или избавлением от иррациональности, смысл при этом остается тем же. Так, переход от 1 2 к 2 2 , т.е. к дроби с равным значением без знака корня в знаменателе и будет нужным нам действием. Приведем еще один пример: у нас есть дробь x x - y . Проведем необходимые преобразования и получим тождественно равную ей дробь x · x + y x - y , освободившись от иррациональности в знаменателе.

После формулировки определения мы можем переходить непосредственно к изучению последовательности действий, которые нужно выполнить для такого преобразования.

Основные действия для избавления от иррациональности в знаменателе дроби

Для освобождения от корней нужно провести два последовательных преобразования дроби: умножить обе части дроби на число, отличное от нуля, а затем преобразовать выражение, получившееся в знаменателе. Рассмотрим основные случаи.

В наиболее простом случае можно обойтись преобразованием знаменателя. Например, мы можем взять дробь со знаменателем, равным корню из 9 . Вычислив 9 , мы запишем в знаменателе 3 и избавимся таким образом от иррациональности.

Однако гораздо чаще приходится предварительно умножать числитель и знаменатель на такое число, которое потом позволит привести знаменатель к нужному виду (без корней). Так, если мы выполним умножение 1 x + 1 на x + 1 , мы получим дробь x + 1 x + 1 · x + 1 и сможем заменить выражение в ее знаменателе на x + 1 . Так мы преобразовали 1 x + 1 в x + 1 x + 1 , избавившись от иррациональности.

Иногда преобразования, которые нужно выполнить, бывают довольно специфическими. Разберем несколько наглядных примеров.

Как преобразовать выражение в знаменателе дроби

Как мы уже говорили, проще всего выполнить преобразование знаменателя.

Пример 1

Условие: освободите дробь 1 2 · 18 + 50 от иррациональности в знаменателе.

Решение

Для начала раскроем скобки и получим выражение 1 2 · 18 + 2 · 50 . Используя основные свойства корней, перейдем к выражению 1 2 · 18 + 2 · 50 . Вычисляем значения обоих выражений под корнями и получаем 1 36 + 100 . Здесь уже можно извлечь корни. В итоге у нас получилась дробь 1 6 + 10 , равная 1 16 . На этом преобразования можно закончить.

Запишем ход всего решения без комментариев:

1 2 · 18 + 50 = 1 2 · 18 + 2 · 50 = = 1 2 · 18 + 2 · 50 = 1 36 + 100 = 1 6 + 10 = 1 16

Ответ: 1 2 · 18 + 50 = 1 16 .

Пример 2

Условие: дана дробь 7 - x (x + 1) 2 . Избавьтесь от иррациональности в знаменателе.

Решение

Ранее в статье, посвященной преобразованиям иррациональных выражений с применением свойств корней, мы упоминали, что при любом A и четных n мы можем заменить выражение A n n на | A | на всей области допустимых значений переменных. Следовательно, в нашем случае мы можем записать так: 7 - x x + 1 2 = 7 - x x + 1 . Таким способом мы освободились от иррациональности в знаменателе.

Ответ: 7 - x x + 1 2 = 7 - x x + 1 .

Избавление от иррациональности методом умножения на корень

Если в знаменателе дроби находится выражение вида A и само выражение A не имеет знаков корней, то мы можем освободиться от иррациональности, просто умножив обе части исходной дроби на A . Возможность этого действия определяется тем, что A на области допустимых значений не будет обращаться в 0 . После умножения в знаменателе окажется выражение вида A · A , которое легко избавить от корней: A · A = A 2 = A . Посмотрим, как правильно применять этот метод на практике.

Пример 3

Условие: даны дроби x 3 и - 1 x 2 + y - 4 . Избавьтесь от иррациональности в их знаменателях.

Решение

Выполним умножение первой дроби на корень второй степени из 3 . Получим следующее:

x 3 = x · 3 3 · 3 = x · 3 3 2 = x · 3 3

Во втором случае нам надо выполнить умножение на x 2 + y - 4 и преобразовать получившееся выражение в знаменателе:

1 x 2 + y - 4 = - 1 · x 2 + y - 4 x 2 + y - 4 · x 2 + y - 4 = = - x 2 + y - 4 x 2 + y - 4 2 = - x 2 + y - 4 x 2 + y - 4

Ответ: x 3 = x · 3 3 и - 1 x 2 + y - 4 = - x 2 + y - 4 x 2 + y - 4 .

Если же в знаменателе исходной дроби имеются выражения вида A n m или A m n (при условии натуральных m и n), нам нужно выбрать такой множитель, чтобы получившееся выражение можно было преобразовать в A n n · k или A n · k n (при натуральном k). После этого избавиться от иррациональности будет несложно. Разберем такой пример.

Пример 4

Условие: даны дроби 7 6 3 5 и x x 2 + 1 4 15 . Избавьтесь от иррациональности в знаменателях.

Решение

Нам нужно взять натуральное число, которое можно разделить на пять, при этом оно должно быть больше трех. Чтобы показатель 6 стал равен 5 , нам надо выполнить умножение на 6 2 5 . Следовательно, обе части исходной дроби нам придется умножить на 6 2 5:

7 6 3 5 = 7 · 6 2 5 6 3 5 · 6 2 5 = 7 · 6 2 5 6 3 5 · 6 2 = 7 · 6 2 5 6 5 5 = = 7 · 6 2 5 6 = 7 · 36 5 6

Во втором случае нам потребуется число, большее 15 , которое можно разделить на 4 без остатка. Берем 16 . Чтобы получить такой показатель степени в знаменателе, нам надо взять в качестве множителя x 2 + 1 4 . Уточним, что значение этого выражения не будет 0 ни в каком случае. Вычисляем:

x x 2 + 1 4 15 = x · x 2 + 1 4 x 2 + 1 4 15 · x 2 + 1 4 = = x · x 2 + 1 4 x 2 + 1 4 16 = x · x 2 + 1 4 x 2 + 1 4 4 4 = x · x 2 + 1 4 x 2 + 1 4

Ответ : 7 6 3 5 = 7 · 36 5 6 и x x 2 + 1 4 15 = x · x 2 + 1 4 x 2 + 1 4 .

Избавление от иррациональности методом умножения на сопряженное выражение

Следующий метод подойдет для тех случаев, когда в знаменателе исходной дроби стоят выражения a + b , a - b , a + b , a - b , a + b , a - b . В таких случаях нам надо взять в качестве множителя сопряженное выражение. Поясним смысл этого понятия.

Для первого выражения a + b сопряженным будет a - b , для второго a - b – a + b . Для a + b – a - b , для a - b – a + b , для a + b – a - b , а для a - b – a + b . Иначе говоря, сопряженное выражение – это такое выражение, в котором перед вторым слагаемым стоит противоположный знак.

Давайте рассмотрим, в чем именно заключается данный метод. Допустим, у нас есть произведение вида a - b · a + b . Оно может быть заменено разностью квадратов a - b · a + b = a 2 - b 2 , после чего мы переходим к выражению a − b , лишенному радикалов. Таким образом, мы освободились от иррациональности в знаменателе дроби с помощью умножения на сопряженное выражение. Возьмем пару наглядных примеров.

Пример 5

Условие: избавьтесь от иррациональности в выражениях 3 7 - 3 и x - 5 - 2 .

Решение

В первом случае берем сопряженное выражение, равное 7 + 3 . Теперь производим умножение обеих частей исходной дроби на него:

3 7 - 3 = 3 · 7 + 3 7 - 3 · 7 + 3 = 3 · 7 + 3 7 2 - 3 2 = = 3 · 7 + 3 7 - 9 = 3 · 7 + 3 - 2 = - 3 · 7 + 3 2

Во втором случае нам понадобится выражение - 5 + 2 , которое является сопряженным выражению - 5 - 2 . Умножим на него числитель и знаменатель и получим:

x - 5 - 2 = x · - 5 + 2 - 5 - 2 · - 5 + 2 = = x · - 5 + 2 - 5 2 - 2 2 = x · - 5 + 2 5 - 2 = x · 2 - 5 3

Возможно также перед умножением выполнить преобразование: если мы вынесем из знаменателя сначала минус, считать будет удобнее:

x - 5 - 2 = - x 5 + 2 = - x · 5 - 2 5 + 2 · 5 - 2 = = - x · 5 - 2 5 2 - 2 2 = - x · 5 - 2 5 - 2 = - x · 5 - 2 3 = = x · 2 - 5 3

Ответ: 3 7 - 3 = - 3 · 7 + 3 2 и x - 5 - 2 = x · 2 - 5 3 .

Важно обратить внимание на то, чтобы выражение, полученное в итоге умножения, не обращалось в 0 ни при каких переменных из области допустимых значений для данного выражения.

Пример 6

Условие: дана дробь x x + 4 . Преобразуйте ее так, чтобы в знаменателе не было иррациональных выражений.

Решение

Начнем с нахождения области допустимых значений переменной x . Она определена условиями x ≥ 0 и x + 4 ≠ 0 . Из них можно сделать вывод, что нужная область представляет собой множество x ≥ 0 .

Сопряженное знаменателю выражение представляет собой x - 4 . Когда мы можем выполнить умножение на него? Только в том случае, если x - 4 ≠ 0 . На области допустимых значений это будет равносильно условию x≠16. В итоге мы получим следующее:

x x + 4 = x · x - 4 x + 4 · x - 4 = = x · x - 4 x 2 - 4 2 = x · x - 4 x - 16

Если x будет равен 16 , то мы получим:

x x + 4 = 16 16 + 4 = 16 4 + 4 = 2

Следовательно, x x + 4 = x · x - 4 x - 16 при всех значениях x , принадлежащих области допустимых значений, за исключением 16 . При x = 16 получим x x + 4 = 2 .

Ответ: x x + 4 = x · x - 4 x - 16 , x ∈ [ 0 , 16) ∪ (16 , + ∞) 2 , x = 16 .

Преобразование дробей с иррациональностью в знаменателе с использованием формул суммы и разности кубов

В предыдущем пункте мы выполняли умножение на сопряженные выражения с тем, чтобы потом использовать формулу разности квадратов. Иногда для избавления от иррациональности в знаменателе полезно воспользоваться и другими формулами сокращенного умножения, например, разностью кубов a 3 − b 3 = (a − b) · (a 2 + a · b + b 2) . Этой формулой удобно пользоваться, если в знаменателе исходной дроби стоят выражения с корнями третьей степени вида A 3 - B 3 , A 3 2 + A 3 · B 3 + B 3 2 . и т.д. Чтобы применить ее, нам нужно умножить знаменатель дроби на неполный квадрат суммы A 3 2 + A 3 · B 3 + B 3 2 или разность A 3 - B 3 . Точно также можно применить и формулу суммы a 3 + b 3 = (а) · (a 2 − a · b + b 2) .

Пример 7

Условие: преобразуйте дроби 1 7 3 - 2 3 и 3 4 - 2 · x 3 + x 2 3 так, чтобы избавиться от иррациональности в знаменателе.

Решение

Для первой дроби нам нужно воспользоваться методом умножения обеих частей на неполный квадрат суммы 7 3 и 2 3 , поскольку потом мы сможем выполнить преобразование с помощью формулы разности кубов:

1 7 3 - 2 3 = 1 · 7 3 2 + 7 3 · 2 3 + 2 3 2 7 3 - 2 3 · 7 3 2 + 7 3 · 2 3 + 2 3 2 = = 7 3 2 + 7 3 · 2 3 + 2 3 2 7 3 3 - 2 3 3 = 7 2 3 + 7 · 2 3 + 2 2 3 7 - 2 = = 49 3 + 14 3 + 4 3 5

Во второй дроби представим знаменатель как 2 2 - 2 · x 3 + x 3 2 . В этом выражении виден неполный квадрат разности 2 и x 3 , значит, мы можем умножить обе части дроби на сумму 2 + x 3 и воспользоваться формулой суммы кубов. Для этого должно быть соблюдено условие 2 + x 3 ≠ 0 , равносильное x 3 ≠ - 2 и x ≠ − 8:

3 4 - 2 · x 3 + x 2 3 = 3 2 2 - 2 · x 3 + x 3 2 = = 3 · 2 + x 3 2 2 - 2 · x 3 + x 3 2 · 2 + x 3 = 6 + 3 · x 3 2 3 + x 3 3 = = 6 + 3 · x 3 8 + x

Подставим в дробь - 8 и найдем значение:

3 4 - 2 · 8 3 + 8 2 3 = 3 4 - 2 · 2 + 4 = 3 4

Подведем итоги. При всех x , входящих в область значений исходной дроби (множество R), за исключением - 8 , мы получим 3 4 - 2 · x 3 + x 2 3 = 6 + 3 · x 3 8 + x . Если x = 8 , то 3 4 - 2 · x 3 + x 2 3 = 3 4 .

Ответ: 3 4 - 2 · x 3 + x 2 3 = 6 + 3 · x 3 8 + x , x ≠ 8 3 4 , x = - 8 .

Последовательное применение различных способов преобразования

Часто на практике встречаются более сложные примеры, когда мы не можем освободиться от иррациональности в знаменателе с помощью всего одного метода. Для них нужно последовательно выполнять несколько преобразований или подбирать нестандартные решения. Возьмем одну такую задачу.

Пример N

Условие: преобразуйте 5 7 4 - 2 4 , чтобы избавиться от знаков корней в знаменателе.

Решение

Выполним умножение обеих частей исходной дроби на сопряженное выражение 7 4 + 2 4 с ненулевым значением. Получим следующее:

5 7 4 - 2 4 = 5 · 7 4 + 2 4 7 4 - 2 4 · 7 4 + 2 4 = = 5 · 7 4 + 2 4 7 4 2 - 2 4 2 = 5 · 7 4 + 2 4 7 - 2

А теперь применим тот же способ еще раз:

5 · 7 4 + 2 4 7 - 2 = 5 · 7 4 + 2 4 · 7 + 2 7 - 2 · 7 + 2 = = 5 · 7 4 + 2 4 · 7 + 2 7 2 - 2 2 = 5 · 7 4 + 7 4 · 7 + 2 7 - 2 = = 5 · 7 4 + 2 4 · 7 + 2 5 = 7 4 + 2 4 · 7 + 2

Ответ: 5 7 4 - 2 4 = 7 4 + 2 4 · 7 + 2 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

В данной теме мы рассмотрим все три перечисленные выше группы пределов с иррациональностями. Начнём с пределов, содержащих неопределенность вида $\frac{0}{0}$.

Раскрытие неопределенности $\frac{0}{0}$.

Схема решения стандартных примеров такого типа обычно состоит из двух шагов:

  • Избавляемся от иррациональности, вызвавшей неопределенность, домножая на так называемое "сопряжённое" выражение;
  • При необходимости раскладываем выражение в числителе или знаменателе (или и там и там) на множители;
  • Сокращаем множители, приводящие к неопределённости, и вычисляем искомое значение предела.

Термин "сопряжённое выражение", использованный выше, будет детально пояснён в примерах. Пока что останавливаться на нём подробно нет резона. Вообще, можно пойти иным путём, без использования сопряжённого выражения. Иногда от иррациональности может избавить удачно подобранная замена. Такие примеры редки в стандартных контрольных работах, поэтому на использование замены рассмотрим лишь один пример №6 (см. вторую часть данной темы).

Нам понадобится несколько формул, которые я запишу ниже:

\begin{equation} a^2-b^2=(a-b)\cdot(a+b) \end{equation} \begin{equation} a^3-b^3=(a-b)\cdot(a^2+ab+b^2) \end{equation} \begin{equation} a^3+b^3=(a+b)\cdot(a^2-ab+b^2) \end{equation} \begin{equation} a^4-b^4=(a-b)\cdot(a^3+a^2 b+ab^2+b^3)\end{equation}

Кроме того, предполагаем, что читатель знает формулы для решения квадратных уравнений. Если $x_1$ и $x_2$ - корни квадратного трёхчлена $ax^2+bx+c$, то разложить его на множители можно по следующей формуле:

\begin{equation} ax^2+bx+c=a\cdot(x-x_1)\cdot(x-x_2) \end{equation}

Формул (1)-(5) вполне хватит для решения стандартных задач, к которым мы сейчас и перейдём.

Пример №1

Найти $\lim_{x\to 3}\frac{\sqrt{7-x}-2}{x-3}$.

Так как $\lim_{x\to 3}(\sqrt{7-x}-2)=\sqrt{7-3}-2=\sqrt{4}-2=0$ и $\lim_{x\to 3} (x-3)=3-3=0$, то в заданном пределе мы имеем неопределённость вида $\frac{0}{0}$. Раскрыть эту неопределённость нам мешает разность $\sqrt{7-x}-2$. Для того, чтобы избавляться от подобных иррациональностей, применяют умножение на так называемое "сопряжённое выражение". Как действует такое умножение мы сейчас и рассмотрим. Умножим $\sqrt{7-x}-2$ на $\sqrt{7-x}+2$:

$$(\sqrt{7-x}-2)(\sqrt{7-x}+2)$$

Чтобы раскрыть скобки применим , подставив в правую часть упомянутой формулы $a=\sqrt{7-x}$, $b=2$:

$$(\sqrt{7-x}-2)(\sqrt{7-x}+2)=(\sqrt{7-x})^2-2^2=7-x-4=3-x.$$

Как видите, если умножить числитель на $\sqrt{7-x}+2$, то корень (т.е. иррациональность) в числителе исчезнет. Вот это выражение $\sqrt{7-x}+2$ и будет сопряжённым к выражению $\sqrt{7-x}-2$. Однако мы не вправе просто взять и умножить числитель на $\sqrt{7-x}+2$, ибо это изменит дробь $\frac{\sqrt{7-x}-2}{x-3}$, стоящую под пределом. Умножать нужно одовременно и числитель и знаменатель:

$$ \lim_{x\to 3}\frac{\sqrt{7-x}-2}{x-3}= \left|\frac{0}{0}\right|=\lim_{x\to 3}\frac{(\sqrt{7-x}-2)\cdot(\sqrt{7-x}+2)}{(x-3)\cdot(\sqrt{7-x}+2)}$$

Теперь вспомним, что $(\sqrt{7-x}-2)(\sqrt{7-x}+2)=3-x$ и раскроем скобки. А после раскрытия скобок и небольшого преобразования $3-x=-(x-3)$ сократим дробь на $x-3$:

$$ \lim_{x\to 3}\frac{(\sqrt{7-x}-2)\cdot(\sqrt{7-x}+2)}{(x-3)\cdot(\sqrt{7-x}+2)}= \lim_{x\to 3}\frac{3-x}{(x-3)\cdot(\sqrt{7-x}+2)}=\\ =\lim_{x\to 3}\frac{-(x-3)}{(x-3)\cdot(\sqrt{7-x}+2)}= \lim_{x\to 3}\frac{-1}{\sqrt{7-x}+2} $$

Неопределенность $\frac{0}{0}$ исчезла. Сейчас можно легко получить ответ данного примера:

$$ \lim_{x\to 3}\frac{-1}{\sqrt{7-x}+2}=\frac{-1}{\sqrt{7-3}+2}=-\frac{1}{\sqrt{4}+2}=-\frac{1}{4}.$$

Замечу, что сопряжённое выражение может менять свою структуру - в зависимости от того, какую именно иррациональность оно должно убрать. В примерах №4 и №5 (см. вторую часть данной темы) будет использован иной вид сопряжённого выражения.

Ответ : $\lim_{x\to 3}\frac{\sqrt{7-x}-2}{x-3}=-\frac{1}{4}$.

Пример №2

Найти $\lim_{x\to 2}\frac{3x^2-5x-2}{\sqrt{x^2+5}-\sqrt{7x^2-19}}$.

Так как $\lim_{x\to 2}(\sqrt{x^2+5}-\sqrt{7x^2-19})=\sqrt{2^2+5}-\sqrt{7\cdot 2^2-19}=3-3=0$ и $\lim_{x\to 2}(3x^2-5x-2)=3\cdot2^2-5\cdot 2-2=0$, то мы имеем дело с неопределённостью вида $\frac{0}{0}$. Избавимся от иррациональности в знаменателе данной дроби. Для этого доможим и числитель и знаменатель дроби $\frac{3x^2-5x-2}{\sqrt{x^2+5}-\sqrt{7x^2-19}}$ на выражение $\sqrt{x^2+5}+\sqrt{7x^2-19}$, сопряжённое к знаменателю:

$$ \lim_{x\to 2}\frac{3x^2-5x-2}{\sqrt{x^2+5}-\sqrt{7x^2-19}}=\left|\frac{0}{0}\right|= \lim_{x\to 2}\frac{(3x^2-5x-2)(\sqrt{x^2+5}+\sqrt{7x^2-19})}{(\sqrt{x^2+5}-\sqrt{7x^2-19})(\sqrt{x^2+5}+\sqrt{7x^2-19})} $$

Вновь, как и в примере №1, нужно использовать для раскрытия скобок. Подставив в правую часть упомянутой формулы $a=\sqrt{x^2+5}$, $b=\sqrt{7x^2-19}$, получим такое выражение для знаменателя:

$$ \left(\sqrt{x^2+5}-\sqrt{7x^2-19}\right)\left(\sqrt{x^2+5}+\sqrt{7x^2-19}\right)=\\ =\left(\sqrt{x^2+5}\right)^2-\left(\sqrt{7x^2-19}\right)^2=x^2+5-(7x^2-19)=-6x^2+24=-6\cdot(x^2-4) $$

Вернёмся к нашему пределу:

$$ \lim_{x\to 2}\frac{(3x^2-5x-2)(\sqrt{x^2+5}+\sqrt{7x^2-19})}{(\sqrt{x^2+5}-\sqrt{7x^2-19})(\sqrt{x^2+5}+\sqrt{7x^2-19})}= \lim_{x\to 2}\frac{(3x^2-5x-2)(\sqrt{x^2+5}+\sqrt{7x^2-19})}{-6\cdot(x^2-4)}=\\ =-\frac{1}{6}\cdot \lim_{x\to 2}\frac{(3x^2-5x-2)(\sqrt{x^2+5}+\sqrt{7x^2-19})}{x^2-4} $$

В примере №1 практически сразу после домножения на сопряжённое выражение произошло сокращение дроби. Здесь перед сокращением придётся разложить на множители выражения $3x^2-5x-2$ и $x^2-4$, а уж потом перейти к сокращению. Чтобы разложить на множители выражение $3x^2-5x-2$ нужно использовать . Для начала решим квадратное уравнение $3x^2-5x-2=0$:

$$ 3x^2-5x-2=0\\ \begin{aligned} & D=(-5)^2-4\cdot3\cdot(-2)=25+24=49;\\ & x_1=\frac{-(-5)-\sqrt{49}}{2\cdot3}=\frac{5-7}{6}=-\frac{2}{6}=-\frac{1}{3};\\ & x_2=\frac{-(-5)+\sqrt{49}}{2\cdot3}=\frac{5+7}{6}=\frac{12}{6}=2. \end{aligned} $$

Подставляя $x_1=-\frac{1}{3}$, $x_2=2$ в , будем иметь:

$$ 3x^2-5x-2=3\cdot\left(x-\left(-\frac{1}{3}\right)\right)(x-2)=3\cdot\left(x+\frac{1}{3}\right)(x-2)=\left(3\cdot x+3\cdot\frac{1}{3}\right)(x-2) =(3x+1)(x-2). $$

Теперь настал черёд разложить на множители выражение $x^2-4$. Воспользуемся , подставив в неё $a=x$, $b=2$:

$$ x^2-4=x^2-2^2=(x-2)(x+2) $$

Используем полученные результаты. Так как $x^2-4=(x-2)(x+2)$ и $3x^2-5x-2=(3x+1)(x-2)$, то:

$$ -\frac{1}{6}\cdot \lim_{x\to 2}\frac{(3x^2-5x-2)(\sqrt{x^2+5}+\sqrt{7x^2-19})}{x^2-4} =-\frac{1}{6}\cdot \lim_{x\to 2}\frac{(3x+1)(x-2)(\sqrt{x^2+5}+\sqrt{7x^2-19})}{(x-2)(x+2)} $$

Сокращая на скобку $x-2$ получим:

$$ -\frac{1}{6}\cdot \lim_{x\to 2}\frac{(3x+1)(x-2)(\sqrt{x^2+5}+\sqrt{7x^2-19})}{(x-2)(x+2)} =-\frac{1}{6}\cdot \lim_{x\to 2}\frac{(3x+1)(\sqrt{x^2+5}+\sqrt{7x^2-19})}{x+2}. $$

Всё! Неопределённость исчезла. Ещё один шаг и мы приходим к ответу:

$$ -\frac{1}{6}\cdot \lim_{x\to 2}\frac{(3x+1)(\sqrt{x^2+5}+\sqrt{7x^2-19})}{x+2}=\\ =-\frac{1}{6}\cdot\frac{(3\cdot 2+1)(\sqrt{2^2+5}+\sqrt{7\cdot 2^2-19})}{2+2}= -\frac{1}{6}\cdot\frac{7(3+3)}{4}=-\frac{7}{4}. $$

Ответ : $\lim_{x\to 2}\frac{3x^2-5x-2}{\sqrt{x^2+5}-\sqrt{7x^2-19}}=-\frac{7}{4}$.

В следующем примере рассмотрим случай, когда иррациональности будут присутствовать как в числителе, так и в знаменателе дроби.

Пример №3

Найти $\lim_{x\to 5}\frac{\sqrt{x+4}-\sqrt{x^2-16}}{\sqrt{x^2-3x+6}-\sqrt{5x-9}}$.

Так как $\lim_{x\to 5}(\sqrt{x+4}-\sqrt{x^2-16})=\sqrt{9}-\sqrt{9}=0$ и $\lim_{x\to 5}(\sqrt{x^2-3x+6}-\sqrt{5x-9})=\sqrt{16}-\sqrt{16}=0$, то мы имеем неопределённость вида $\frac{0}{0}$. Так как в данном случае корни наличествуют и в знаменателе, и в числителе, то дабы избавиться от неопределённости придется домножать сразу на две скобки. Во-первых, на выражение $\sqrt{x+4}+\sqrt{x^2-16}$, сопряжённое числителю. А во-вторых на выражение $\sqrt{x^2-3x+6}-\sqrt{5x-9}$, сопряжённое знаменателю.

$$ \lim_{x\to 5}\frac{\sqrt{x+4}-\sqrt{x^2-16}}{\sqrt{x^2-3x+6}-\sqrt{5x-9}}=\left|\frac{0}{0}\right|=\\ =\lim_{x\to 5}\frac{(\sqrt{x+4}-\sqrt{x^2-16})(\sqrt{x+4}+\sqrt{x^2-16})(\sqrt{x^2-3x+6}+\sqrt{5x-9})}{(\sqrt{x^2-3x+6}-\sqrt{5x-9})(\sqrt{x^2-3x+6}+\sqrt{5x-9})(\sqrt{x+4}+\sqrt{x^2-16})} $$ $$ -x^2+x+20=0;\\ \begin{aligned} & D=1^2-4\cdot(-1)\cdot 20=81;\\ & x_1=\frac{-1-\sqrt{81}}{-2}=\frac{-10}{-2}=5;\\ & x_2=\frac{-1+\sqrt{81}}{-2}=\frac{8}{-2}=-4. \end{aligned} \\ -x^2+x+20=-1\cdot(x-5)(x-(-4))=-(x-5)(x+4). $$

Для выражения $x^2-8x+15$ получим:

$$ x^2-8x+15=0;\\ \begin{aligned} & D=(-8)^2-4\cdot 1\cdot 15=4;\\ & x_1=\frac{-(-8)-\sqrt{4}}{2}=\frac{6}{2}=3;\\ & x_2=\frac{-(-8)+\sqrt{4}}{2}=\frac{10}{2}=5. \end{aligned}\\ x^2+8x+15=1\cdot(x-3)(x-5)=(x-3)(x-5). $$

Подставляя полученные разожения $-x^2+x+20=-(x-5)(x+4)$ и $x^2+8x+15=(x-3)(x-5)$ в рассматриваемый предел, будем иметь:

$$ \lim_{x\to 5}\frac{(-x^2+x+20)(\sqrt{x^2-3x+6}+\sqrt{5x-9})}{(x^2-8x+15)(\sqrt{x+4}+\sqrt{x^2-16})}= \lim_{x\to 5}\frac{-(x-5)(x+4)(\sqrt{x^2-3x+6}+\sqrt{5x-9})}{(x-3)(x-5)(\sqrt{x+4}+\sqrt{x^2-16})}=\\ =\lim_{x\to 5}\frac{-(x+4)(\sqrt{x^2-3x+6}+\sqrt{5x-9})}{(x-3)(\sqrt{x+4}+\sqrt{x^2-16})}= \frac{-(5+4)(\sqrt{5^2-3\cdot 5+6}+\sqrt{5\cdot 5-9})}{(5-3)(\sqrt{5+4}+\sqrt{5^2-16})}=-6. $$

Ответ : $\lim_{x\to 5}\frac{\sqrt{x+4}-\sqrt{x^2-16}}{\sqrt{x^2-3x+6}-\sqrt{5x-9}}=-6$.

В следующей (второй) части рассмотрим ещё пару примеров, в которых сопряжённое выражение будет иметь иной вид, нежели в предыдущих задачах. Главное, помните, что цель использования сопряжённого выражения - избавиться от иррациональности, вызывающей неопределённость.

Преобразование выражений, содержащих арифметические квадратные корни

Цель урока: создание условий для формирования умений, упрощать выражения, содержащие арифметические квадратные корни в ходе работы в группах сменного состава.

Задачи урока: проверить теоретическую подготовку учащихся, умение извлекать квадратный корень из числа, формировать навыки правильного воспроизведения своих знаний и умений, развивать вычислительные навыки, воспитывать умение работать в парах и ответственности за общее дело.

Ход урока.

I . Организационный момент. « ТАБЛИЦА ГОТОВНОСТИ»

Фиксация уровня готовности к началу занятия.

25 карточек красного цвета (5 баллов), желтого цвета (4 балла), синего

цвета (3 балла).

Таблица готовности

5 баллов (хочу знать, делать, решать)

4 балла (я готов к работе)

3 балла (я не очень хорошо себя чувствую, я не понимаю материал, мне нужна помощь)

II . Индивидуальная работа по карточкам

Карточка 1

Вынести множитель из-под знака корня:

Карточка 2

Внести множитель под знак корня:

Карточка 3

Упростить:
а)
б)
в)

(Проверка после проверки домашнего задания)

III . Проверка домашнего задания.

№166, 167 устно фронтально

(самооценивание с помощью сигнальных карточек: зелёный - всё верно, красный – есть ошибка)

IV . Изучение нового материала. Работа в группах сменного состава.

Самостоятельно изучить материал, чтобы потом суметь объяснить его членам группы. Класс делится на 6 групп по 4 человека.

1, 2 и 3 группы – учащиеся со средними способностями

Как избавиться от иррациональности в знаменателе дроби? Рассмотрим общий случай и конкретные примеры.

Если число или выражение, стоящее под знаком квадратного корня в знаменателе, является одним из множителей, чтобы избавиться от иррациональности в знаменателе и числитель, и знаменатель дроби умножаем на квадратный корень из этого числа или выражения:

Примеры.

1) ;

2) .

4, 5 и 6 группы – учащиеся со способностями выше средних.

Если знаменатель дроби - сумма либо разность двух выражений, содержащих квадратный корень, чтобы избавиться от иррациональности в знаменателе умножаем и числитель, и знаменатель на сопряженный радикал:

Примеры. Освободиться от иррациональности в знаменателе дроби:

Работа в новых группах (4 группы по 6 человек, от каждой группы по 1 человеку).

Объяснение изученного материала членам новой группы. (взаимооценивание – прокомментировать объяснение материала учеником)

V . Проверка усвоения теоретического материала. На вопросы отвечают учащиеся, не объясняющие данную часть теоретического материала.

1) Как избавиться от иррациональности в знаменателе дроби, если число или выражение, стоящее под знаком квадратного корня в знаменателе, является одним из множителей?

2) Как избавиться от иррациональности в знаменателе дроби, если знаменатель дроби - сумма либо разность двух выражений, содержащих квадратный корень?

3) как избавиться от иррациональности в знаменателе дроби

4) Как избавиться от иррациональности в знаменателе дроби

VI . Закрепление изученного материала. Проверочная самостоятельная работа.

№81 («Алгебра» 8 класс, А.Абылкасымова, И.Бекбоев, А.Абдиев, З,Жумагулова)

№170 (1,2,3,5,6) («Алгебра» 8 класс, А.Шыныбеков)

Критерии оценивания:

Уровень А – № 81 примеры 1-5 отметка «3»

Уровень В – № 81 примеры 6-8 и №170 примеры 5,6 отметка «4»

Уровень С – № 170 примеры 1-6 отметка «5»

(самооценивание, проверка по образцу в флипчарте)

VII . Домашнее задание.

№ 218

VIII . Рефлексия. « Телеграмма»

Каждому предлагается заполнить бланк телеграммы, получив при этом следующую инструкцию: «Что вы думаете о прошедшем занятии? Что было для вас важным? Чему вы научились? Что вам понравилось? Что осталось неясным? В каком направлении нам стоит продвигаться дальше? Напишите мне, пожалуйста, об этом короткое послание –телеграмму из 11 слов. Я хочу узнать ваше мнение для того, чтобы учитывать его в дальнейшей работе».

Итог урока.