Функции и их значения. Основные свойства функций

Функции и их значения. Основные свойства функций
Функции и их значения. Основные свойства функций

Нули функции
Нулём функции называется то значение х , при котором функция обращается в 0, то есть f(x)=0.

Нули – это точки пересечения графика функции с осью Ох.

Четность функции
Функция называется чётной, если для любого х из области определения выполняется равенство f(-x) = f(x)

Четная функция симметрична относительно оси Оу

Нечетность функции
Функция называется нечётной, если для любого х из области определения выполняется равенство f(-x) = -f(x).

Нечетная функция симметрична относительно начала координат.
Функция которая не является ни чётной,ни нечётной называется функцией общего вида.

Возрастание функции
Функция f(x) называется возрастающей, если большему значению аргумента соответствует большее значение функции, т.е.

Убывание функции
Функция f(x) называется убывающей, если большему значению аргумента соответствует меньшее значение функции, т.е.

Промежутки, на которых функция либо только убывает, либо только возрастает, называются промежутками монотонности . Функция f(x) имеет 3 промежутка монотонности:

Находят промежутки монотонности с помощью сервиса Интервалы возрастания и убывания функции

Локальный максимум
Точка х 0 называется точкой локального максимума, если для любого х из окрестности точки х 0 выполняется неравенство: f(x 0) > f(x)

Локальный минимум
Точка х 0 называется точкой локального минимума, если для любого х из окрестности точки х 0 выполняется неравенство: f(x 0) < f(x).

Точки локального максимума и точки локального минимума называются точками локального экстремума.

точки локального экстремума.

Периодичность функции
Функция f(x) называется периодичной, с периодом Т , если для любого х выполняется равенство f(x+T) = f(x) .

Промежутки знакопостоянства
Промежутки, на которых функция либо только положительна, либо только отрицательна, называются промежутками знакопостоянства.

Непрерывность функции
Функция f(x) называется непрерывной в точке x 0 , если предел функции при x → x 0 равен значению функции в этой точке, т.е. .

Точки разрыва
Точки, в которых нарушено условие непрерывности называются точками разрыва функции.

x 0 - точка разрыва.

Общая схема для построения графиков функций

1. Найти область определения функции D(y).

2. Найти точки пересечения графика функций с осями координат.

3. Исследовать функцию на четность или нечетность.

4. Исследовать функцию на периодичность.

5. Найти промежутки монотонности и точки экстремума функции.

6. Найти промежутки выпуклости и точки перегиба функции.

7. Найти асимптоты функции.

8. По результатам исследования построить график.

Пример: Исследовать функцию и построить ее график: y = x 3 – 3x

1) Функция определена на всей числовой оси, т. е. ее область определения D(y) = (-∞; +∞).

2) Найдем точки пересечения с осями координат:

с осью ОХ: решим уравнение x 3 – 3x = 0

с осью ОY: y(0) = 0 3 – 3*0 = 0

3) Выясним, не является ли функция четной или нечетной:

y(-x) = (-x) 3 – 3(-x) = -x 3 + 3x = - (x 3 – 3x) = -y(x)

Отсюда следует, что функция является нечетной.

4) Функция непериодична.

5) Найдем промежутки монотонности и точки экстремума функции: y’ = 3x 2 - 3.

Критические точки: 3x 2 – 3 = 0, x 2 =1, x= ±1.

y(-1) = (-1) 3 – 3(-1) = 2

y(1) = 1 3 – 3*1 = -2

6) Найдем промежутки выпуклости и точки перегиба функции: y’’ = 6x

Критические точки: 6x = 0, x = 0.

y(0) = 0 3 – 3*0 = 0

7) Функция непрерывна, асимптот у нее нет.

8) По результатам исследования построим график функции.

Русская гимназия

КОНСПЕКТ

Выполнил

ученик 10“Ф” класса Бурмистров Сергей

Руководитель

учитель Математики

Юлина О.А.

Нижний Новгород


Функция и её свойства

Функция- зависимость переменной у от переменной x , если каждому значению х соответствует единственное значение у .

Переменная х- независимая переменная или аргумент.

Переменная у- зависимая переменная

Значение функции- значение у , соответствующее заданному значению х .

Область определения функции- все значения, которые принимает независимая переменная.

Область значений функции (множество значений)- все значения, которые принимает функция.

Функция является четной- если для любого х f(x)=f(-x)

Функция является нечетной- если для любого х из области определения функции выполняется равенство f(-x)=-f(x)

Возрастающая функция- если для любых х 1 и х 2 , таких, что х 1 < х 2 , выполняется неравенство f( х 1 ) х 2 )

Убывающая функция- если для любых х 1 и х 2 , таких, что х 1 < х 2 , выполняется неравенство f( х 1 )>f( х 2 )

Способы задания функции

¨ Чтобы задать функцию, нужно указать способ, с помощью которого для каждого значения аргумента можно найти соответствующее значение функции. Наиболее употребительным является способ задания функции с помощью формулы у =f(x) , где f(x)- íåêîòîðîå âыðàæåíèå с переменной х . В таком случае говорят, что функция задана формулой или что функция задана аналитически.

¨ На практике часто используется табличный способ задания функции. При этом способе приводится таблица, указывающая значения функции для имеющихся в таблице значений аргумента. Примерами табличного задания функции являются таблица квадратов, таблица кубов.

Виды функций и их свойства

1) Постоянная функция- функция, заданная формулой у= b , где b- некоторое число. Графиком постоянной функции у=b является прямая, параллельная оси абсцисс и проходящая через точку (0;b) на оси ординат

2) Прямая пропорциональность- функция, заданная формулой у= kx , где к¹0. Число k называется коэффициентом пропорциональности .

Cвойства функции y=kx :

1. Область определения функции- множество всех действительных чисел

2. y=kx - нечетная функция

3. При k>0 функция возрастает, а при k<0 убывает на всей числовой прямой

3)Линейная функция- функция, которая задана формулой y=kx+b , где k иb - действительные числа. Если в частности, k=0 , то получаем постоянную функцию y=b ; если b=0 , то получаем прямую пропорциональность y=kx .

Свойства функции y=kx+b :

1. Область определения- множество всех действительных чисел

2. Функция y=kx+b общего вида, т.е. ни чётна, ни нечётна.

3. При k>0функция возрастает, а при k<0 убывает на всей числовой прямой

Графиком функции является прямая .

4)Обратная пропорциональность- функция, заданная формулой y=k /х, где k¹0 Число k называют коэффициентом обратной пропорциональности.

Свойства функции y=k / x:

1. Область определения- множество всех действительных чисел кроме нуля

2. y=k / x - нечетная функция

3. Если k>0, то функция убывает на промежутке (0;+¥) и на промежутке (-¥;0). Если k<0, то функция возрастает на промежутке (-¥;0) и на промежутке (0;+¥).

Графиком функции является гипербола .

5)Функция y=x 2

Свойства функции y=x 2:

2. y=x 2 - четная функция

3. На промежутке функция убывает

Графиком функции является парабола .

6)Функция y=x 3

Свойства функции y=x 3:

1. Область определения- вся числовая прямая

2. y=x 3 - нечетная функция

3. Функция возрастает на всей числовой прямой

Графиком функции является кубическая парабола

7)Степенная функция с натуральным показателем- функция, заданная формулой y=x n , где n - натуральное число. При n=1 получаем функцию y=x, ее свойства рассмотрены в п.2. При n=2;3 получаем функции y=x 2 ; y=x 3 . Их свойства рассмотрены выше.

Пусть n- произвольное четное число, большее двух: 4,6,8... В этом случае функция y=x n обладает теми же свойствами, что и функция y=x 2 . График функции напоминает параболу y=x 2 , только ветви графика при |х|>1 тем круче идут вверх, чем больше n, а при |х|<1 тем “теснее прижимаются” к оси Х, чем больше n.

Пусть n- произвольное нечетное число, большее трех: 5,7,9... В этом случае функция y=x n обладает теми же свойствами, что и функция y=x 3 . График функции напоминает кубическую параболу.

8)Степенная функция с целым отрицательным показателем- функция, заданная формулой y=x -n , где n - натуральное число. При n=1 получаем y=1/х, свойства этой функции рассмотрены в п.4.

Пусть n- нечетное число, большее единицы: 3,5,7... В этом случае функция y=x -n обладает в основном теми же свойствами, что и функция y=1/х.

Пусть n- четное число, например n=2.

Свойства функции y=x -2 :

1. Функция определена при всех x¹0

2. y=x -2 - четная функция

3. Функция убывает на (0;+¥) и возрастает на (-¥;0).

Теми же свойствами обладают любые функции при четном n, большем двух.

9)Функция y= Ö х

Свойства функции y= Ö х :

1. Область определения - луч ;

Четность, нечетность:

при b = 0 функция четная

при b 0 функция не является ни четной, ни нечетной

при D > 0 два нуля: ,

при D = 0 один нуль:

при D < 0 нулей нет

Промежутки знакопостоянства:

если, а > 0, D > 0, то

если, а > 0, D = 0, то

e сли а > 0, D < 0, то

если а < 0, D > 0, то

если а < 0, D = 0, то

если а < 0, D < 0, то

- Промежутки монотонности

при а > 0

при а < 0

Графиком квадратичной функции является парабола – кривая, симметричная относительно прямой , проходящей через вершину параболы (вершиной параболы называется точка пересечения параболы с осью симметрии).

Чтобы построить график квадратичной функции, нужно:

1) найти координаты вершины параболы и отметить ее в ко­ординатной плоскости;

2) построить еще несколько точек, принадлежащих пара­боле;

3) соединить отмеченные точки плавной линией.

Координаты вершины параболы определяются по формулам:

; .

Преобразование графиков функции

1. Растяжение графика у = х 2 вдоль оси у в |а| раз (при |а| < 1 - это сжатие в 1/ |а| раз).

Если, а < 0, произвести, кроме того, зеркальное отражение графика отно­сительно оси х (ветви параболы будут направлены вниз).

Результат: график функции у = ах 2 .

2. Параллельный перенос графика функ­ции у = ах 2 вдоль оси х на | m | (вправо при

m > 0 и влево при т < 0).

Результат: график функции у = а(х - т) 2 .

3. Параллельный перенос графика функ­ции вдоль оси у на | n | (вверх при п > 0 и вниз при п < 0).

Результат: график функции у = а(х - т) 2 + п.

Квадратичные неравенства

Неравенства вида ах 2 + b х + с > 0 и ах 2 + bх + с < 0, где х - переменная, a , b и с - некоторые числа, причем, а≠ 0, называют неравенствами второй степе­ни с одной переменной.

Решение неравенства второй степени с одной пе­ременной можно рассматривать как нахождение промежутков, в которых соответствующая квадра­тичная функция принимает положительные или от­рицательные значения.

Для решения неравенств вида ах 2 + bх + с > 0 и ах 2 + bх + с < 0 поступают следующим образом:

1) находят дискриминант квадратного трехчлена и выясня­ют, имеет ли трехчлен корни;

2) если трехчлен имеет корни, то отмечают их на оси х и че­рез отмеченные точки проводят схематически параболу, вет­ви которой направлены вверх при а > 0 или вниз при а < 0; если трехчлен не имеет корней, то схематически изобража­ют параболу, расположенную в верхней полуплоскости при а > 0 или в нижней при а < 0;

3) находят на оси х промежутки, для которых точки парабо­лы расположены выше оси х (если решают неравенство ах 2 + bх + с > 0) или ниже оси х (если решают неравенство ах 2 + bх + с < 0).

Пример:

Решим неравенство .

Рассмотрим функцию

Ее графиком является парабола, ветви которой направлены вниз (т. к. ).

Выясним, как расположен график относительно оси х. Решим для этого уравнение . Получим, что х = 4. Уравнение имеет единственный корень. Значит, парабола касается оси х.

Изобразив схематически параболу, най­дем, что функция принимает отрицательные значе­ния при любом х, кроме 4.

Ответ можно записать так: х - любое число, не равное 4.

Решение неравенств методом интервалов

схема решения

1. Найти нули функции, стоящей в левой части неравенства.

2. Отметить положение нулей на числовой оси и определить их кратность (если k i четное, то нуль четной кратности, если k i нечетное - то нечетной).

3. Найти знаки функции в промежутках между ее нулями, на­чиная с крайнего правого промежутка: в этом промежутке функция в левой части неравенства всегда положительна для приведенного вида неравенств. При переходе справа налево через нуль функции от одного промежутка к сосед­нему следует учитывать:

если нуль нечетной кратности, знак функции изменяется,

если нуль четной кратности, знак функции сохраняется.

4. Записать ответ.

Пример:

(х + 6) (х + 1) (х - 4) < 0.

Найден нули функции. Они равны: х 1 = -6; х 2 = -1; х 3 = 4.

Отметим на координатной прямой нули функции f ( x ) = (х + 6) (х + 1) (х - 4).

Найдем знаки этой функции в каждом из промежутков (-∞; -6), (-6; -1), (-1; 4) и

Из рисунка видно, что множеством решений неравенства является объединение промежутков (-∞; -6) и (-1; 4).

Ответ: (-∞ ; -6) и (-1; 4).

Рассмотренный способ решения неравенств на­зывают методом интервалов.

Определение : Числовой функцией называется соответствие, которое каждому числу х из некоторого заданного множества сопоставляет единственное число y.

Обозначение:

где x – независимая переменная (аргумент), y – зависимая переменная (функция). Множество значений x называется областью определения функции (обозначается D(f)). Множество значений y называется областью значений функции (обозначается E(f)). Графиком функции называется множество точек плоскости с координатами (x, f(x))

Способы задания функции.

  1. аналитический способ (с помощью математической формулы);
  2. табличный способ (с помощью таблицы);
  3. описательный способ (с помощью словесного описания);
  4. графический способ (с помощью графика).

Основные свойства функции.

1. Четность и нечетность

Функция называется четной, если
– область определения функции симметрична относительно нуля
f(-x) = f(x)


График четной функции симметричен относительно оси 0y

Функция называется нечетной, если
– область определения функции симметрична относительно нуля
– для любого х из области определения f(-x) = –f(x)

График нечетной функции симметричен относительно начала координат.

2.Периодичность

Функция f(x) называется периодической с периодом , если для любого х из области определения f(x) = f(x+Т) = f(x-Т) .

График периодической функции состоит из неограниченно повторяющихся одинаковых фрагментов.

3. Монотонность (возрастание, убывание)

Функция f(x) возрастает на множестве Р, если для любых x 1 и x 2 из этого множества, таких, что x 1

Функция f(x) убывает на множестве Р, если для любых x 1 и x 2 из этого множества, таких, что x 1 f(x 2) .

4. Экстремумы

Точка Х max называется точкой максимума функции f(x) , если для всех х из некоторой окрестности Х max , выполнено неравенство f(х) f(X max).

Значение Y max =f(X max) называется максимумом этой функции.

Х max – точка максимума
У max – максимум

Точка Х min называется точкой минимума функции f(x) , если для всех х из некоторой окрестности Х min , выполнено неравенство f(х) f(X min).

Значение Y min =f(X min) называется минимумом этой функции.

X min – точка минимума
Y min – минимум

X min , Х max – точки экстремума
Y min , У max – экстремумы.

5. Нули функции

Нулем функции y = f(x) называется такое значение аргумента х, при котором функция обращается в нуль: f(x) = 0.

Х 1 ,Х 2 ,Х 3 – нули функции y = f(x).

Задачи и тесты по теме "Основные свойства функции"

  • Свойства функций - Числовые функции 9 класс

    Уроков: 2 Заданий: 11 Тестов: 1

  • Свойства логарифмов - Показательная и логарифмическая функции 11 класс

    Уроков: 2 Заданий: 14 Тестов: 1

  • Функция квадратного корня, его свойства и график - Функция квадратного корня. Свойства квадратного корня 8 класс

    Уроков: 1 Заданий: 9 Тестов: 1

  • Степенные функции, их свойства и графики - Степени и корни. Степенные функции 11 класс

    Уроков: 4 Заданий: 14 Тестов: 1

  • Функции - Важные темы для повторения ЕГЭ по математике

    Заданий: 24

Изучив эту тему, Вы должны уметь находить область определения различных функций, определять с помощью графиков промежутки монотонности функции, исследовать функции на четность и нечетность. Рассмотрим решение подобных задач на следующих примерах.

Примеры.

1. Найти область определения функции.

Решение: область определения функции находится из условия